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Anomalous diffusion and collapse of self-gravitating Langevin particles inD dimensions

Pierre-Henri Chavanis* and Clément Sire
Laboratoire de Physique The´orique (FRE 2603 du CNRS), Universite´ Paul Sabatier, 118 route de Narbonne,

31062 Toulouse Cedex 4, France
~Received 7 March 2003; published 29 January 2004!

We address the generalized thermodynamics and the collapse of a system of self-gravitating Langevin
particles exhibiting anomalous diffusion in a space of dimensionD. This is a basic model of stochastic particles
in interaction. The equilibrium states correspond to polytropic configurations similar to stellar polytropes and
polytropic stars. The indexn of the polytrope is related to the exponent of anomalous diffusion. We consider
a high-friction limit and reduce the problem to the study of the nonlinear Smoluchow´ ski-Poisson system. We
show that the associated Lyapunov functional is the Tsallis free energy. We discuss in detail the equilibrium
phase diagram of self-gravitating polytropes as a function ofD andn, and determine their stability by using
turning point arguments and analytical methods. When no equilibrium state exists, we investigate self-similar
solutions of the nonlinear Smoluchowski-Poisson system describing the collapse. Our stability analysis of
polytropic spheres can be used to settle the generalized thermodynamical stability of self-gravitating Langevin
particles as well as the nonlinear dynamical stability of stellar polytropes, polytropic stars and polytropic
vortices. Our study also has applications concerning the chemotactic aggregation of bacterial populations.
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I. INTRODUCTION

In preceding papers@1–4#, we have studied a model o
self-gravitating Brownian particles enclosed within a sphe
cal box of radiusR in a space of dimensionD. This model
can be considered as a prototypical dynamical model of
tems with long-range interactions possessing a rich ther
dynamical structure. For simplicity, we considered t
Smoluchowski-Poisson~SP! system which is deduced from
the Kramers-Poisson system in a high friction limit~or for
large times!. These Fokker-Planck-Poisson equations w
first proposed in Ref.@1# as a simplified dynamical model o
self-gravitating systems. Their relation with thermodynam
~first and second principles! was clearly established in term
of a maximum entropy production principle, and their ri
properties~self-organized states or collapse! were described
qualitatively in this preliminary work. A thorough study o
this system of equations was undertaken more recentl
Refs.@2–4#, complemented by rigorous mathematical resu
~see Refs.@5–9# and references therein!.

The Smoluchowski equation is a particular Fokker-Plan
equation involving a diffusion and a drift@10#. In our model,
the drift is directed toward the region of high densities due
the gravitational force which is generated by the partic
themselves. This retroaction leads to a situation of colla
when attraction prevails over diffusion@2–4#. The SP system
also provides a simplified model for the chemotactic agg
gation of bacterial populations@11# and for the formation of
large-scale vortices in two-dimensional hydrodynamics@12–
17#. It can be shown that the SP system continuously
creases a free energy constructed with the Boltzmann
tropy @1,2#. Accordingly, the stationary solutions of the S
system are given by the Boltzmann distribution, which mi
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mizes Boltzmann’s free energy at fixed mass. The equi
rium state is then determined by solving the Boltzman
Poisson~or Emden! equation, as in the case of isotherm
gaseous stars and isothermal stellar systems@18,19#. How-
ever, depending on the value of the temperatureT, an equi-
librium solution does not always exist and the system c
undergo a catastrophic collapse. We determined analytic
and numerically self-similar solutions leading to a finite tim
singularity@2,3#. In Refs.@3,4#, we showed that the evolution
continues after the collapse until a Dirac peak is formed.

In this paper, we propose to extend our study to a gen
alized class of Smoluchowski equations proposed in R
@20#. They can be obtained from the familiar Smoluchows
equation by assuming that the diffusion coefficient depe
on the density while the drift coefficient is constant~or the
opposite!. They can also be obtained from standard stoch
tic processes by considering a special form of multiplicat
noise@20,21# or an extended class of transition probabiliti
@22,23#. These equations are consistent with a generali
maximum entropy production principle@20#. For simplicity,
we shall assume that the diffusion coefficient is a pow
law of the density. In the absence of drift, this would le
to anomalous diffusion. If we take into account a drift ter
and a self-attraction, we have to solve the nonline
Smoluchowski-Poisson~NSP! system. It can be shown
@20,24# that the NSP system decreases continuously a
energy associated with Tsallis entropy@25#. Accordingly, the
stationary solutions of the NSP system are given by a po
tropic distribution which minimizes Tsallis’ free energy
fixed mass. The equilibrium state is then determined by so
ing the Lane-Emden equation, as in the case of polytro
stars and stellar polytropes@18,19#. Depending on the value
of the control parameter and on the indexn of the polytrope,
three situations can occur:~i! the NSP system can relax to
ward an incomplete polytrope maintained by the walls of
confining box;~ii ! the NSP system can relax toward a stab
©2004 The American Physical Society16-1
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complete polytrope of radiusR* ,R, unaffected by the box
and~iii ! the NSP system can undergo a catastrophic colla
leading to a finite time singularity.

The paper has two parts that are relatively independen
the first part of the paper~Secs. II and III!, we study the
dynamical stability of stellar systems, gaseous stars and
dimensional~2D! vortices by using athermodynamical anal-
ogy @20,23,26#. Stellar polytropes maximize the Tsallis e
tropy ~considered as aH function! at a fixed mass and
energy. This is a condition of nonlinear dynamical stabil
via the Vlasov equation. Polytropic stars minimize the Tsa
free energy~related to the star energy functional! at a fixed
mass. This is a condition of nonlinear dynamical stability v
the Euler-Jeans equations. Polytropic vortices maximize
Tsallis entropy~considered as aH function! at a fixed circu-
lation and energy. This is a condition of nonlinear dynami
stability via the 2D Euler equation. These metaequilibriu
states can emerge in complex systems as a result of a
complete violent relaxation@27#. Our dynamical interpreta
tion of the Tsallis entropy as a particularH function @28#
differs from the thermodynamical interpretation propos
by Boghosian@29# in 2D turbulence and by Taruya and Sak
gami @30–32# for self-gravitating systems. We perform a
exhaustive study of the structure and stability of polytro
spheres by determining whether they are maxima or min
~or saddle points! of the Tsallis functional. For sake of gen
erality, we perform our study in a space of dimensionD. We
shall exhibit particular dimensionsD52, 4, 2(11&) and
10 which play a special role in our problem. The dimens
D52 is critical because the results established forD.2
cannot be directly extended toD52 @3#. On the other hand
the nature of the caloric curve changes forD54 and D
510. This extends the study performed by Taruya and Sa
gami @30,31# and Chavanis@26,33# for D53.

In the second part of the paper~Sec. IV!, we study the
dynamics and thermodynamics of self-gravitating Lange
particles experiencing anomalous diffusion. Their equil
rium distribution minimizes the Tsallis free energy at fix
mass. This is a condition of thermodynamical stability in
generalized sense. This is also a condition of linear dyna
cal stability via generalized Fokker-Planck equations~in the
present context the NSP system! @2,20,24#. Thus, the stability
analysis of Sec. III can also be used in that context. When
static solution does not exist or is unstable, the system
dergoes a catastrophic collapse. In Sec. IV, we show tha
NSP system admits self-similar solutions describing the c
lapse and leading to a finite time singularity. The dens
decreases at large distances asr;r 2a. In the canonical situ-
ation ~fixed T!, the scaling exponent isan52n/(n21)
wheren is the polytropic index. We also consider a microc
nonical situation in which the generalized temperatureT(t)
varies in time so as to rigorously conserve energy. In t
case, the scaling equation has solutions foran<a
<amax(n,D) whereamax(n,D) is a nontrivial exponent. The
value of a effectively selected by the system is determin
by the dynamics. In Sec. V, we perform direct numeric
simulations of the SP and NSP systems with higher accu
than in Ref.@2#. We confirm the scaling regime and discu
the value of the scaling exponent. In the microcanonical s
01611
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ation, we give numerical evidence thata5an , so that the
temperatureT(t) is finite at the collapse time~this observa-
tion has been made independently in Ref.@9# for the SP
system!. However, the convergence to this value is so sl
that the evolution displays a pseudoscaling regime withan
<a<amax for the densities achieved. We explain the phy
cal reason for this behavior and we conjecture thata
.amax will be reached in more realistic models with a no
uniform temperature@34#. This paper closely follows the
style and presentation of our companion paper for isother
spheres@3#. These two papers complete the classical mo
graph of Chandrasekhar on self-gravitating isothermal
polytropic spheres inD53 @18#.

II. DYNAMICAL STABILITY OF SYSTEMS
WITH LONG-RANGE INTERACTIONS

A. Stellar systems

Let us consider a collection ofN stars with massm in
gravitational interaction. They form a HamiltonianN-body
system with long-range~Newtonian! interactions. We work
in a space of dimensionD and enclose the system within
spherical box of radiusR. Let f (r ,v,t) denote the distribution
function of the system, i.e.,f (r ,v,t)dDrdDv gives the mass
of stars whose position and velocity are in the cell (r ,v;r
1dDr ,v1dDv) at time t. The integral off over the velocity
determines the spatial density

r5E f dDv. ~1!

The total mass of the configuration is

M5E rdDr . ~2!

In the mean-field approximation, the total energy of the s
tem can be expressed as

E5
1

2 E f v2dDrdDv1
1

2 E rFdDr5K1W, ~3!

whereK is the kinetic energy andW the potential energy. The
gravitational potentialF is related to the density by th
Newton-Poisson equation

DF5SDGr, ~4!

whereSD is the surface of a unit sphere in aD-dimensional
space andG is the constant of gravity.

For fixed N@1 and t→1`, the system is expected t
reach a statistical equilibrium state described by the class
Boltzmann entropySB@ f #52* f ln fdDrdDv. However, the
relaxation time t relax due to ‘‘collisions’’ ~more properly
close encounters! is in general considerably larger than th
dynamical timetD so that this statistical equilibrium state
often not physically relevant@35,36#. This is the case in par
ticular for elliptical galaxies wheret relax;(N/ ln N)tD with
6-2
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N;1012, while their age is;100tD @19#. For t!t relax and
N→1`, the dynamics of stars is described by the Vlas
equation

] f

]t
1v

] f

]r
1F

] f

]v
50, ~5!

whereF52¹F is the gravitational force determined by th
Poisson equation~4!. For anyH function,

S@ f #52E C~ f !dDrdDv, ~6!

where C is convex, i.e.,C9.0, it can be shown that the
variational problem

MaxS@ f # at fixedE@ f #,M @ f #, ~7!

determines a stationary solution of the Vlasov equation w
strong ~nonlinear! dynamical stability properties@28,37#.
Such solutions can result from a process of~possibly incom-
plete! violent relaxation@26#. Introducing Lagrange multipli-
ers, the first order variationsdS2bdE2adM50 lead to

C8~ f !52bS v2

2
1F D2a. ~8!

Therefore,f 5 f (e) wheree5(v2/2)1F is the energy of a
star by unit of mass. These distribution functions, depend
only on the energy, form a particular class of stationary
lutions of the Vlasov equation. Other solutions can be c
structed with the Jeans theorem@19# but their stability is
more difficult to investigate. The conservation of angu
momentum can be easily included in the foregoing disc
sion @38#.

B. Barotropic stars

Let us now consider a self-gravitating gaseous system
scribed by the Euler-Jeans equations

]r

]t
1¹~ru!50, ~9!

]u

]t
1~u•¹!u52

1

r
¹p2¹F. ~10!

We assume that the gas is barotropic with an equation
statep5p(r). The most important examples of barotrop
fluids are those that are isentropic or adiabatic, that is th
whose specific entropy is constant. Ifs5const, the first prin-
ciple of thermodynamicsdu52pdv1Tds ~wherev51/r)
reduces todu5(p/r2)dr, whereu is the internal energy by
unit of mass. The total energy of the fluid is therefore

W@r#5E rE
0

r p~r8!

r82 dr8dDr1
1

2 E rFdDr1E r
u2

2
dDr .

~11!
01611
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The first term is the internal energy, the second the grav
tional energy and the third the kinetic energy associated w
the mean motion. As argued in Ref.@26#, the variational
problem

MinW @r# at fixedM @r# ~12!

determines a stationary solution of the Euler-Jeans equat
with strong ~nonlinear! dynamical stability properties. We
shall not prove this result here but it is expected to follo
from relatively standard methods of stability theory. The s
lutions of this variational problem satisfy the condition
hydrostatic balance

¹p52r¹F, ~13!

between pressure and gravity. The foregoing results can
extended to barotropic stars rotating rigidly with angular v
locity V @38#.

C. Two-dimensional vortices

Let us finally consider a collection ofN point vortices
with circulationg in 2D hydrodynamics. They form a Hamil
tonian system with long-range~logarithmic! interactions. We
call v the vorticity, c the stream function, andu52z3¹c
the velocity field. We also noteG5*vd2r the circulation
and E51/2*vcd2r the energy. For fixedN@1 and t→
1`, the system is expected to reach a statistical equilibri
state described by the classical Boltzmann entropySB@v#
52*v ln vd2r @39#. However, the relaxation timet relax due
to ‘‘collisions’’ is in general considerably larger than the d
namical timetD , so that this statistical equilibrium state
often not physically relevant@15,16#. For t!t relax andN→
1`, the dynamics of point vortices is described by the 2
Euler-Poisson system

]v

]t
1u•¹v50, ~14!

v52Dc. ~15!

The Euler equation also governs the dynamics of 2D inco
pressible and inviscid continuous vorticity fields. For anyH
function,

S@v#52E C~v!d2r , ~16!

where C is convex, i.e.,C9.0, it can be shown that the
variational problem

MaxS@v# at fixedE@v#,G@v#, ~17!

determines a stationary solution of the 2D Euler equat
with strong ~nonlinear! dynamical stability properties@40#.
Such solutions can result from a process of~possibly incom-
plete! violent relaxation@17#. Introducing Lagrange multipli-
ers, the conditiondS2bdE2adG50 leads to

C8~v!52bc2a. ~18!
6-3
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Therefore,v5v~c!, which is the general form of stationar
solutions of the 2D Euler equation for domains with no sp
cific symmetries. The conservation of angular moment
and impulse can be easily included in the foregoing disc
sion @20#.

D. Thermodynamical analogy

Since the variational problems~7!, ~12! and~17! are simi-
lar to the usual variational problems that arise in thermo
namics~with the Boltzmann entropy!, we can develop ather-
modynamical analogyto analyze the dynamical stability o
stellar systems, gaseous stars, and 2D vortices@17,20,23,26#.
In this analogy, the functionalS plays the role of a general
ized entropy,b is a generalized inverse temperature,b(E) a
generalized caloric curve etc... . The variational problem~7!
is similar to a condition of microcanonical stability. We ca
also introduce a generalized free energyF@ f #5E@ f #
2TS@ f # which is the Legendre transform ofS@ f #. The mini-
mization ofF@ f # at fixedT andM @ f # is similar to a condi-
tion of canonical stability. This is equivalent to first minimiz
F@ f # at fixed r~r ! to get f * (r ,v) and then to minimize
F@r#5F@ f * #, calculated withf * , at fixed M @r#. Now, it
can be shown@26# thatF@r# is precisely functional~11! with
u50. Therefore, the variational problem~12! is similar to a
condition of canonical stability. Since canonical stability im
plies microcanonical stability~but not the converse! @20#, we
conclude that ‘‘stellar systems are stable whenever co
sponding barotropic stars are stable’’ which provides a n
interpretation of Antonov’s first law@26#.

In 2D hydrodynamics, the variational problem~17! is
similar to a condition of microcanonical stability. It is stron
ger than the maximization ofJ@v#5S@v#2bE@v# at fixed
b and G@v# ~canonical stability!, which is just a sufficient
condition of nonlinear dynamical stability. It is not a nece
sary condition of stability if the ensembles are inequival
~i.e., if the ‘‘caloric curve’’ presents bifurcations or turnin
points!. Arnold’s theorems just provide sufficient condition
of canonical stability~see, e.g., Ref.@20#!. Therefore, in the
domain of inequivalence~corresponding to a region o
‘‘negative specific heats’’! a flow can be nonlinearly dynami
cally stable while it violates Arnold’s theorems. This h
important implications in jovian fluid dynamics as discuss
in @40,41#.

The preceding arguments also apply to other systems
long-range interactions such as the HMF model, for exam
@42#. This opens the route to many generalizations by cha
ing the potential of interaction and the ‘‘generalized entrop
~H function!. In this paper, we shall specialize in the case
particles interacting via a Newtonian potential~e.g., self-
gravitating systems, 2D vortices,...!. We shall also consider a
special form of theH function, known as the Tsallis entrop
leading to power-law distributions~polytropes!.

III. EQUILIBRIUM STRUCTURE OF POLYTROPIC
SPHERES IN DIMENSION D

A. Stellar polytropes

Let us consider a particular class of stationary solutions
the Vlasov equation calledstellar polytropes@19#. Nonlin-
early dynamically stable solutions maximize the Tsallis e
tropy
01611
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Sq52
1

q21 E ~ f q2 f !dDrdDv ~19!

at a fixed massM and energyE, whereq is a real number.
For q→1, Eq. ~19! reduces to the ordinary Boltzmann e
tropy describing isothermal stellar systems. We empha
that, in the present context, Tsallis and Boltzmann entrop
are particularH functions~not true entropies! that are related
to the dynamics, not to the thermodynamics. Still, due to
thermodynamical analogy discussed in Sec. II D, we sh
use a thermodynamical langage to study the dynamical
bility problem. In this analogy, the dynamical stability crite
rion for stellar polytropes corresponds to amicrocanonical
stability condition.

The critical points of entropy at fixed mass and ener
satisfy the condition

dSq2bdE2ldM50, ~20!

whereb51/T andl are Lagrange multipliers~T is the tem-
perature andl the chemical potential in the generalize
sense!. The variational principle~20! leads to the polytropic
distribution function

f ~r ,v!5H m2
~q21!b

q Fv2

2
1F~r !G J 1/~q21!

, ~21!

wherem5@12(q21)l#/q. We define the polytropic index
n by the relation

n5
D

2
1

1

q21
. ~22!

We first consider the case (q21)b/q.0 and allowb to
take negative values. Then, Eq.~21! can be rewritten

f 5AFa2F2
v2

2 Gn2~D/2!

, ~23!

where

A5F ~q21!b

q G1/~q21!

, a5
12~q21!l

~q21!b
. ~24!

If n.D/2 ~i.e., q.1 andb.0!, f 8(e),0 wheree5(v2/2)
1F is the stellar energy. Therefore, high energy particles
less probable than low energy particles, which correspo
to the physical situation. Equation~23! is valid for v,vmax

5A2(a2F). If v.vmax5A2(a2F), we set f 50. This
distribution function describes stellar polytropes which we
first introduced by Plummer@43#. If n5D/2 ~i.e.,q→`), the
distribution f (e) is a step function. This corresponds to th
self-gravitating Fermi gas at zero temperature~white
dwarfs!. In D53, classical white dwarf stars are equivale
to polytropes with indexn53/2 @18#. In D-dimensions, clas-
sical ‘‘white dwarf stars’’ are equivalent to polytropes wit
an index

n3/25
D

2
. ~25!
6-4
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If n→1` ~i.e., q→1), we recover isothermal distributio
functions. If n,D/2 ~i.e., q,1 and qb,0), high energy
particles are more probable than low energy partic
f 8(e).0. This situation is unphysical but it can be cons
ered at a formal level. The distribution function diverges li
(12v/vmax)

n2D/2 asv→vmax. The moments off converge if
and only if n.D/221. Therefore, ifD/221,n,D/2 ~i.e.,
q,0 andb.0!, stellar polytropes exist mathematically b
they are not physical. Ifn,D/221 ~i.e., 0,q,1 and
b,0!, stellar polytropes do not exist.

We now consider the case (q21)b/q,0. Then, Eq.~21!
can be rewritten

f 5AFa1F1
v2

2 Gn2~D/2!

, ~26!

where

A5F ~12q!b

q G1/~q21!

, a5
12~q21!l

~12q!b
. ~27!

If n.D/2 ~i.e., q.1 andb,0!, the model is ill posed be
causef (v) diverges forv→1`. If n,D/2, the distribution
function goes to zero likev2(D22n) for v→1`. If 0,n
,D/2 ~i.e., q,122/D), the densityr5* f dDv does not ex-
ist. If 21,n,0 @i.e., 122/D,q,D/(D12)], thedensity
exists but not the pressurep5(1/D)* f v2dDv. If n,21
@i.e., D/(D12),q,1 andb.0], the density and the pres
sure exist.

In conclusion, only positive temperatures states are ph
cal. If n>D/2 ~i.e., q.1), the system is described by th
distribution function ~23!. If n,21 @i.e., D/(D12),q
,1], the system is described by the distribution functi
~26!. In this paper, we shall only consider stellar polytrop
with index n>D/2. Using Eq.~23!, the spatial densityr
5* f dDv and the pressurep5(1/D)* f v2dDv can be ex-
pressed as

r52D/221ASD~a2F!nB~D/2,n112D/2!, ~28!

p5
1

n11
2D/221ASD~a2F!n11B~D/2,n112D/2!,

~29!

with B(a,b) being the beta function. In obtaining Eq.~29!,
we have used the identityB(m11,n)5mB(m,n)/(m1n).
Eliminating the gravitational potential between these two
lations, we recover the well-known fact that stellar po
tropes satisfy the equation of state

p5Krg, g511
1

n
, ~30!

like gaseous polytropes~see below!. In the present context
the polytropic constant is given by

K5
1

~n11!
$2D/221SDAB~D/2,n112D/2!%21/n. ~31!
01611
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Using Eqs.~24! and ~28!, the distribution function~23! can
be written as a function of the density as

f 5
1

Z Fr1/n2
v2/2

~n11!KGn2D/2

, ~32!

with

Z52D/221SDB~D/2,n112D/2!@K~n11!#D/2. ~33!

The distribution function~32! can also be obtained by max
mizing Sq@ f # at fixedM, E, andr~r !, or equivalently at fixed
K51/2* f v2dDrdDv and r~r !. It is then possible to expres
the energy~3! and the entropy~19! in terms ofr~r ! and T.
Using Eq.~32!, it is easy to show that

E5
D

2 E pdDr1
1

2 E rFdDr , ~34!

Sq@r#52S n2
D

2 D S bE pdDr2M D . ~35!

In arriving at Eq.~35!, we have used the identityB(m,n
11)5nB(m,n)/(m1n). Proceeding carefully, we ca
check that forq→1, Eq. ~35! reduces to the Boltzmann en
tropy expressed in terms of hydrodynamical variables@see
Eq. ~9! of Ref. @3##. The problem of the stability of stella
polytropes now amounts to determiningmaximaof Sq@r# at
fixed E@r# andM @r#.

B. Gaseous polytropes

We shall consider a particular class of barotropic st
called gaseous polytropes. They are characterized by a
equation of state of the form

p5Krg, g511
1

n
, ~36!

whereK is a constant. We recall that gaseous polytropes
described by a local thermodynamical equilibrium conditi
andnot by a distribution function of the form~21!, except in
the isothermal casen→1` ~see Ref.@33#!. Their energy
~11! is

W@r#5nE pdDr1
1

2 E rFdDr1E u2

2
dDr . ~37!

Using Eqs.~34! and ~35!, we note that the free energy o
stellar polytropesFq5E2TSq is

Fq@r#5
1

2 E rFdDr1nE pdDr , ~38!

within an additional constant. Takingu50, we check on this
specific example thatFq@r#5W @r#. In fact, this relation is
general, as shown in Ref.@26#. Therefore, the dynamical sta
bility of gaseous polytropes can be settled by studying
minimization ofFq@r# at fixed mass. In the thermodynam
6-5
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cal analogy of Sec. II, this corresponds to acanonicalde-
scription. We note finally that the free energy~38! can be
written explicitly:

Fq@r#5
1

2 E rFdDr1
K

g21 E ~rg2r!dDr . ~39!

This can be viewed as a free energyFg5E2KSg associated
with a Tsallis entropy in position spaceSg5@1/(g
21)#*(rg2r)dDr , whereg plays the role of theq param-
eter andK the role of a temperature. The parametersq andg
are related to each other byg5112(q21)/@21D(q
21)#. The equilibrium distribution can be written

r5Fl2
g21

Kg
FG1/~g21!

, ~40!

which is equivalent to Eq.~28!. When considering gaseou
polytropes, we shall allow for arbitrary value of the inde
n>0.

C. D-dimensional Lane-Emden equation

The configuration of a stellar polytrope is obtained
substituting Eq.~23! in the Poisson equation~4! using Eq.
~1!. This yields a self-consistent mean-field equation for
gravitational potentialF. An equivalent equation can be ob
tained by substituting the equation of state~30! in the con-
dition of hydrostatic equilibrium~13!, as for gaseous poly
tropes ~the equivalence between these two approache
shown in Ref.@26#!. Using the Gauss theorem

dF

dr
5

GM~r !

r D21 , ~41!

whereM (r )[*0
r rSDr 8D21dr8 is the mass within the spher

of radiusr, we can rewrite Eq.~13! in the form

1

r D21

d

dr S r D21

r

dp

dr D52SDGr, ~42!

which is the fundamental equation of hydrostatic equilibriu
in D dimensions. For the polytropic equation of state~30!,
we have

K~n11!
1

r D21

d

dr S r D21
dr1/n

dr D52SDGr. ~43!

The case of isothermal spheres with an equation of stap
5rT is recovered in the limitn→1`. To determine the
structure of polytropic spheres, we set

r5r0un, j5FSDGr0
121/n

K~n11!
G1/2

r , ~44!

wherer0 is the central density. Then, Eq.~43! can be put in
the form

1

jD21

d

dj S jD21
du

dj D52un, ~45!
01611
e

is

which is the D-dimensional generalization of the Lane
Emden equation@18#. For D.2 and

n.
D

D22
[n3 , ~46!

Eq. ~45! has a simple explicit solution, the singular pol
tropic sphere

us5H 2@~D22!n2D#

~n21!2 J 1/~n21!

j22/~n21!. ~47!

The regular solutions of Eq.~45! satisfying the boundary
conditions

u51, u850 at j50, ~48!

must be computed numerically. Forj→0, we can expand the
solutions in Taylor series and we find that

u512
1

2D
j21

n

8D~D12!
j41¯ . ~49!

To obtain the asymptotic behavior of the solutions f
j→1`, we note that the transformationt5 ln j, u
5j22/(n21)z changes Eq.~45! in

d2z

dt2
1

~D22!n2~D12!

n21

dz

dt
52zn2

2@D1~22D !n#

~n21!2 z.

~50!

For D<2 or for D.2 and

n,
D12

D22
[n5 , ~51!

the density falls off to zero at a finite radiusR* . This defines
a complete polytropeof radiusR* . If we denote byj1 the
value of the normalized distance at whichu50; then, forj
→j1 , we have

u52j1u18Fj12j

j1
1

D21

2 S j12j

j1
D 2

1
D~D21!

6 S j12j

j1
D 3

1¯G . ~52!

On the other hand, forD.2 and n.n5 , Eq. ~50! corre-
sponds to the damped motion of a fictitious particle in
potential

V~z!5
D1~22D !n

~n21!2 z21
1

n11
zn11, ~53!

wherez plays the role of position andt the role of time. For
t→1`, the particle will come at rest at the bottom of th
well at positionz05$2@(D22)n2D#/(n21)2%1/(n21). Re-
turning to original variables, we find that
6-6



tio

te

ti

b

,
-

lete

for

ave

y in

s

ere

to

ar-

f

n

ANOMALOUS DIFFUSION AND COLLAPSE OF SELF- . . . PHYSICAL REVIEW E 69, 016116 ~2004!
u→H 2@~D22!n2D#

~n21!2 J 1/~n21!

j22/~n21!5us for j→1`.

~54!

Therefore, the regular solutions of the Lane-Emden equa
~45! behave like the singular solution forj→1`. To deter-
mine the next order correction, we setz5z01z8 with z8
!1. Keeping only terms that are linear inz8, Eq. ~50! be-
comes

d2z8

dt2
1

~D22!n2~D12!

n21

dz8

dt
1

2@~D22!n2D#

n21
z850.

~55!

The discriminant of the second order polynomial associa
with this equation is

D~n!5
2~D22!~102D !n222~D228D14!n1~D22!2

~n21!2 .

~56!

For n→1`, D(n);2(D22)(102D). Furthermore,
D(n)50 for

n65
2D218D2468AD21

~D22!~102D !
. ~57!

For 2,D,10, it is straightforward to check thatn2,n1

,n5 . Therefore, forn.n5 , D has the sign of2(D22)
3(102D) which is negative. Thus

u5usH 11
C

jb/2 cosSA2D

2
ln j1d D J ~j→1`!,

~58!

whereb5@(D22)n2(D12)#/(n21). The density profile
~58! intersects the singular solution~47! infinitely often at
points that asymptotically increase geometrically in the ra
1: exp$2p/A2D% ~see, e.g., Fig. 1 of Ref.@33# for D53).
For D.10, we haven1,n5,n2 . Therefore, if n5,n
,n2 , D has the sign of (D22)(102D) which is negative
and the asymptotic behavior of the solutions is still given
Eq. ~58!. However, forn.n2 , D(n) is positive and there-
fore

u5usH 11
1

jb/2 ~AjAD/21Bj2AD/2!J ~j→1`!. ~59!

Finally, for n5n2 , D50 and we have

u5usH 11
1

jb/2 ~A ln j1B!J ~j→1`!. ~60!

For D510,n2→1` so that the asymptotic behavior ofu is
given by Eq.~58! for n,1`. Sinceus

n;j22n/(n21) at large
distances, the configurations described previously have
‘‘infinite mass’’ which is clearly unphysical. In the following
we shall confine these configurations within a ‘‘box’’ of ra
diusR as for isothermal spheres@3#. Such configurations will
be called incomplete polytropes. We note that the self-
01611
n

d

o

y

an

gravitating Fermi gas at zero temperature forms a comp
polytrope only ifn3/2,n5 , i.e., D,2(11&).4.83.

The Lane-Emden equation can be solved analytically
some particular values of the polytropic index. Forn50,
which corresponds to a body with constant density, we h

u512
1

2D
j2, j15A2D. ~61!

For n51, Eq. ~45! reduces to theD-dimensional Helmholtz
equation. ForD51,

u5cosj, j15
p

2
. ~62!

For D52,

u5J0~j!, j152.40482... . ~63!

Finally, for D53, performing the change of variablesu5x/j,
we get

u5
sinj

j
, j15p. ~64!

The Lane-Emden equation can also be solved analyticall
any dimension of spaceD.2 for the particular index value
n5 . The solution is

u55
1

S 11
j2

D~D22! D
~D22!/2 , ~65!

as can be checked by a direct substitution in Eq.~45!. For
D53, we recover the Schuster solution@18#. We note that
u5;j22D for j→1` implying a finite mass. This contrast
with the asymptotic behavior~54! of the solutions of
the Lane-Emden equation with indexn.n5 . For D52,
n5→1` and we are led back to the isothermal case wh
an analytical solution is also known@3#.

Finally, for D51, the Lane-Emden equation reduces
the form

d2u

dj2 52un. ~66!

This equation corresponds to the motion of a fictitious p
ticle in a potentialV(u)5un11/(n11), whereu plays the
role of position andj the role of time. The first integral o
motion is

E5
1

2 S du

dj D 2

1
un11

n11
. ~67!

The ‘‘energy’’ E is determined by the boundary conditio
~48! yielding E51/(n11). Thus, the solutionu~j! can be
written in integral form as

E
u

1 dx

~12xn11!1/25S 2

n11D 1/2

j. ~68!
6-7
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Except forn50 andn51, it does not seem possible to o
tain u~j! in a closed form. However, the zeroj1 of u is
explicitly given by

j15S n11

2 D 1/2

Ap

GS 21n

11nD
GS 31n

2~11n! D
. ~69!

Therefore,j1;An/2 for n→1`. Furthermore, according to
Eq. ~67!, we haveu8(j1)52@2/(n11)#1/2.

D. Milne variables

As is well known @18#, polytropic spheres satisfy a ho
mology theorem: ifu~j! is a solution of the Lane-Emde
equation, thenA2/(n21)u(Aj) is also a solution, withA an
arbitrary constant. This means that the profile of a polytro
configuration of indexn is always the same~characterized
intrinsically by the functionu!, provided that the central den
sity and the typical radius are rescaled appropriately.
cause of this homology theorem, the second order differ
tial equation~45! can be reduced to afirst order differential
equation for the Milne variables

u52
jun

u8
and v52

ju8

u
. ~70!

Taking the logarithmic derivative ofu andv with respect to
j and using Eq.~45!, we get

1

u

du

dj
5

1

j
~D2nv2u!, ~71!

1

v
dv
dj

5
1

j
~22D1u1v !. ~72!

Taking the ratio of the foregoing equations, we obtain

u

v
dv
du

52
u1v2D12

u1nv2D
. ~73!

The solution curve in the (u,v) plane is plotted in Figs. 1–4
for different values ofD and n. The (u,v) curve is param-
etrized byj. It starts, atj50, from the point (u,v)5(D,0)
with a slope (dv/du)052(D12)/nD. The points of the
horizontal tangent are determined byu1v2D1250 and
the points of the vertical tangent byu1nv2D50. These
two lines intersect at

us5
~D22!n2D

n21
, vs5

2

n21
, ~74!

which corresponds to the singular solution~47!.
The Milne variables can be expressed in terms ofj ex-

plicitly for particular values of the polytropic index. Forn
50, using Eq.~61!, we have
01611
c

-
n-

u5D, v5
2j2

2D2j2 . ~75!

For n5n5 , using Eq.~65!, we have

u5
D

11
j2

D~D22!

, v5
1

D

j2

11
j2

D~D22!

. ~76!

Eliminating j between these two relations, we get

FIG. 1. Phase portrait of the Lane-Emden equation in the (u,v)
plane for D,2 ~specifically D51). The value of the polytropic
index is indicated on each curve. Forn→1`, denotednisoth, we
recover the phase portrait of isothermal spheres.

FIG. 2. Phase portrait of the Lane-Emden equation in the (u,v)
plane for D52. At this dimensionn5→1`, so that the 2D
Schuster solution~65! becomes equivalent to the 2D isotherm
solution @3#. In the (u,v) plane this corresponds to a straight line
6-8
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D

D22
v1u5D. ~77!

More generally, using the asymptotic behavior ofu~j! de-
termined in Sec. III C, we can deduce the form of the so
tion curve in the (u,v) plane. For (2,D,10,n.n5) and for
(D.10,n5,n,n2), the solution curve spirals indefinitel
around the limit point (us ,vs). For (D.10,n.n2), the
curve reaches the point (us ,vs) without spiraling. ForD
510, n2→1` and n553/2. For D,2 and for (D.2,n
,n5), the (u,v) curve is monotonic and tends to (u,v)
5(0,1`) as j→j1 . More precisely, using Eq.~52!, we
have, forn,1`,

FIG. 3. Phase portrait of the Lane-Emden equation in the (u,v)
plane for 2,D,10 ~specificallyD53).

FIG. 4. Phase portrait of the Lane-Emden equation in the (u,v)
plane for D.10 ~specifically D515). For D510, n2→1`.
Therefore, forn.n553/2, the phase portrait is always a spiral e
cept for the indexn51` for which the spiral is reduced to a poin
01611
-

uvn;vn
n21, vn52j1

~n11!/~n21!u18 ~j→j1!. ~78!

For n→1`, j1→1`, and we are lead to our previou
study @3#. For D52, n5→1`.

For n→1`, it is easy to check that the Lane-Emde
functionu ~for polytropes! is related to the Emden functionc
~for isothermal spheres! by the equivalent

un;
1

n
e2c. ~79!

This suggests to introduce the variablesU5u and V5(n
11)v instead of Eq.~70!. For n→1`, U andV tend to the
Milne variablesu, v defined in the case of isothermal spher
~see Ref.@3#!. We could have introduced these variabl
since the beginning but we prefer to respect the notati
used by Chandrasekhar in his classical monograph@18#.

E. Thermodynamical parameters

For an incomplete polytrope confined within a box of r
dius R, the solution of Eq.~45! is terminated by the box a
the normalized radius@see Eq.~44!#

a5FSDGr0
121/n

K~n11!
G1/2

R. ~80!

We shall now relate the parametera to the polytropic con-
stantK ~or generalized temperatureT! and to the energyE.
Starting from the relation

M5E
0

R

rSDr D21dr5SDr0F K~11n!

SDGr0
121/nGD/2E

0

a

unjD21dj,

~81!

and using the Lane-Emden equation~45!, we get

M52SDr0F K~11n!

SDGr0
121/nGD/2

aD21u8~a!. ~82!

Expressing the central density in terms ofa, using Eq.~80!,
we obtain, after some rearrangements,

M52SDFK~11n!

SDG Gn/~n21!

R@~D22!n2D#/~n21!

3a~n11!/~n21!u8~a!. ~83!

For a complete polytrope with radiusR* ,R, we need to
stop the integration atj5j1 . Thus, the equivalent of the
foregoing equation is the ‘‘mass-radius’’ relation

M ~n21!/nR
*
@~D22!~n32n!#/n

5
K~11n!

GSD
1/n vn

~n21!/n , ~84!

where vn is defined by Eq.~78!. For n5n3 , the mass is
independent on the radius. This mathematical property is
lated to the limiting mass of Chandrasekhar for relativis
6-9
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white dwarf stars@18#. For n51, the radius is independen
on mass. For incomplete polytropes, the parameter

h[
M

SD
F SDG

K~11n!G
n/~n21! 1

R@~D22!n2D#/~n21! , ~85!

can be considered as a normalized inverse temperature@33#.
Indeed, for a given massM and box radiusR, it simply
depends on the polytropic constantK which is itself related
to b via Eqs. ~31! and ~24!. In addition, for n→1`, the
parameterh reduces to the corresponding one for isotherm
spheres (h;h` /n,h`5bGMm/RD22,b51/kT) @3#. In
terms of this parameter, Eq.~83! can be rewritten

h52a~n11!/~n21!u8~a!. ~86!

This relation can be expressed in terms of the values of
Milne variables at the normalized box radius. Writingu0
5u(a) andv05v(a), we get

h5~u0v0
n!1/~n21!. ~87!

For a given box radiusR and a given polytropic constantK
~or generalized temperatureT!, this equation determines th
relation between the massM and the central densityr0
~through the parametera!. For D<2 and for (D.2,n
,n5), the normalized box radiusa is necessarily restricted
by the inequalitya<j1 . For the limiting valuea5j1 , cor-
responding to a complete polytrope with radiusR* 5R, we
have

h~j1!5vn . ~88!

More generally, for complete polytropes with radiusR*
<R, we have

h5vnS R*
R D @n~D22!2D#/~n21!

. ~89!

Coming back to incomplete polytropes, we note that for
index n5n5 , Eq. ~87! can be written explicitly as

h5
a~D12!/2

DS 11
a2

D~D22! D
D/2 . ~90!

For a→1`, we observe thath;(3/a)1/2 for D53.
The computation of the energy is a little more intrica

We first recall the expression of the virial theorem in dime
sion DÞ2 ~see Appendix B!:

2K1~D22!W5DVDRDp~R!, ~91!

whereVD5SD /D is the volume of a hypersphere with un
radius. ForD52, the expression of the virial theorem is~see
Appendix B!

2K2
GM2

2
52pR2p~R!. ~92!
01611
l

e

e

.
-

The potential energy of a polytrope can be calculated as
lows. Combining the condition of hydrostatic equilibrium
~13! with the equation of state~30!, we get

~n11!
d

dr S p

r D52
dF

dr
. ~93!

This equation integrates to give

F52~n11!S p

r
2

p~R!

r~R! D1F~R!. ~94!

Inserting this relation in the integral~3! defining the potential
energyW and recalling that the kinetic energy can be writt
K5(D/2)*pdDr , we obtain

W52
1

D
~n11!K1

1

2
~n11!

p~R!

r~R!
M1

1

2
MF~R!.

~95!

For DÞ2, F(R)52GM/@(D22)RD22# and forD52, we
take the conventionF(R)50 ~see Appendix A!. Eliminating
the kinetic energy between Eqs.~91!, ~92!, and~95!, we ob-
tain, for DÞ2,

W5
2D

D122~D22!n H ~n11!VDRDp~R!

2~n11!
p~R!

r~R!
M1

GM2

~D22!RD22J , ~96!

and, forD52,

W52~n11!
GM2

8
2

1

2
~n11!pR2p~R!

1
1

2
~n11!

p~R!

r~R!
M . ~97!

For complete polytropes for whichp(R* )/r(R* )50, we ob-
tain theD-dimensional generalization of the Betti-Ritter fo
mula @18#:

W5
2D

D122~D22!n

GM2

~D22!R
*
D22 ~DÞ2!, ~98!

W52~n11!
GM2

8
1

1

2
GM2 lnS R*

R D ~D52!. ~99!

We note that forD.2, the potential energy is infinite forn
5n5 ~while the mass is finite!. Returning to incomplete poly-
tropes, the total energyE5K1W can be written, forD
Þ2,

E5
21

D122~D22!n H D~42D !

2~D22! F GM2

RD222~n11!~D22!M

3
p~R!

r~R!G2DVDRD~n112D !p~R!J , ~100!
6-10
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and, forD52,

E52~n21!
GM2

8
2

1

2
~n21!pR2p~R!

1
1

2
~n11!

p~R!

r~R!
M . ~101!

Expressing the pressurep(R) in terms of the Lane-Emden
function u~a! using Eqs.~30! and ~44!, using Eqs.~80! and
~83! to eliminate the central densityr0 and the polytropic
constantK ~or temperatureT!, and introducing the Milne
variables~70!, we finally obtain, forDÞ2,

L[2
ERD22

GM2 5
21

~D22!n2~D12!

3FD~42D !

2~D22! S 12
D22

v0
D1

n112D

n11

u0

v0
G , ~102!

and, forD52,

L5
1

8
~n21!1

1

4

n21

n11

u0

v0
2

1

2v0
. ~103!

For D<2 and for (D.2,n,n5), the normalized box radius
a in necessarily restricted by the inequalitya<j1 . For the
limiting valuea5j1 , corresponding to a complete polytrop
with radiusR* 5R, we have

L~j1!5ln , ~104!

with

ln5
2D~42D !

2~D22!@~D22!n2~D12!#
~DÞ2!, ~105!

ln5
1

8
~n21! ~D52!. ~106!

More generally, for complete polytropes with radiusR*
<R, the dimensionless energy is

L5lnS R

R*
D D22

~DÞ2!, ~107!

L5
1

8
~n21!2

1

2
lnS R*

R D ~D52!. ~108!

Eliminating R* between Eqs.~89!, ~107!, and~108!, we ob-
tain

Lh@~n21!~D22!#/@n~D22!2D#

5lnvn
@~n21!~D22!#/@n~D22!2D# ~DÞ2!,

~109!

L5
1

8
~n21!F112 lnS h

vn
D G ~D52!. ~110!
01611
This defines the branch of complete polytropes in theL-h
plane. Coming back to incomplete polytropes, we note
nally that, forD.2, Eq. ~102! is undetermined forn5n5 .
Calculating the kinetic energyK5(D/2)*pdDr with Eqs.
~30!, ~44!, and ~65!, and using the virial theorem~91! to
obtain the potential energy, we find, after simplification, th

L55
D2

4
~42D !F11

a2

D~D22!G
D 1

aD12

3E
0

a jD21

F11
j2

D~D22!G
D dj2

D

2a2 . ~111!

For D53, the integral is explicitly given by

E
0

a j2

S 11
j2

3 D 3 dj5
9a~a223!

8~a213!2 1
3)

8
arctanS a

)
D .

~112!

We note that fora→1`, the energy diverges likeL5
;(p)/64)a for D53.

F. Minimum temperature and minimum energy

The curveh~a! presents an extremum at pointsak such
thatdh/da(ak)50. Using Eqs.~87!, ~71!, and~72!, we find
that this condition is equivalent to

u05
~D22!n2D

n21
5us . ~113!

Therefore, the points whereh is extremum are determine
by the intersections between the solution curve in the (u,v)
plane and the straight line defined by Eq.~113!. The number
of extrema depends on the value ofD andn. It can be deter-
mined easily by a graphical construction using Figs. 1–4~an
explicit construction is made in Fig. 20; also see Ref.@33# for
D53). For D<2, us,0 for n.1 andus.D for n,1 so
that there is no extremum~case A!. For 2,D<10, there is
no extremum forn<n3 ~caseA!, there is one maximum
for n3,n<n5 ~caseB! and there is an infinity of extrema
for n.n5 ~caseC!. They exhibit damped oscillations to
wards the valuehs corresponding to the singular solutio
~47!. Asymptotically,ak follow a geometric progressionak

;exp$2kp/A2D% ~see Ref.@33# for D53). For D.10,
there is no extremum forn<n3 ~caseA!, there is one maxi-
mum for n3,n<n5 ~caseB!, there is an infinity of extrema
for n5,n,n2 ~caseC!, and there is no extremum forn
>n2 ~caseD!. This last case corresponds to an overdamp
evolution towards the valuehs ~in our mechanical analogy o
Sec. III C!. For n5n5 , using Eq.~90!, we find that the ex-
tremum is located ata15AD(D12). For incomplete poly-
tropes, the parameterh is restricted by the inequalities~see
Figs. 5 and 6!

h<vn ~case A!, ~114!
6-11
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h<h~a1! ~casesB and C!, ~115!

h<hs ~case D !. ~116!

These inequalities determine a maximum mass~for given T
and R! or a minimum temperature~for given M and R! be-
yond which the system will either converge toward a co
plete polytrope with radiusR* ,R ~if it is stable! or collapse.
This dynamical evolution will be studied in Sec. IV for th
nonlinear Smoluchowski-Poisson system.

FIG. 5. Mass-central density profiles for polytropic configur
tions in a space of dimension 2,D,10 ~specifically D53). A
mass peak appears for the first time for the indexn3 . Forn.n5 the
profile displays an infinity of peaks. Forn,1, h is a decreasing
function of a. For D<2, theh~a! curves are monotonic.

FIG. 6. Mass-central density profiles for polytropic configur
tions in a space of dimensionD.10 ~specificallyD515). Forn5

,n,n2 ~specificallyn51.321) the profile displays an infinity o
peaks. Forn.n2 ~specificallyn52.5) the functionh(a)→hs for
a→1` without oscillating.
01611
-

The curveL~a! presents an extremum at pointsak8 such
that dL/da(ak8)50. Using Eqs.~102!, ~71!, and ~72!, we
find that this condition is equivalent to

2~n112D !u0
21~n11!~n112D !u0v0

12~D2n21!~D21!u01
1

2
D~D24!~n11!u0

1
1

2
D~D24!(n11)v01

1

2
D~D24!(22D)(n11)50.

~117!

We can check that the point (us ,vs) is a solution of this
equation. On the other hand,v05D22 for u050 andv0;
22u0 /(n11) for u0→6`. Finally, v0→` for u0→u*
where

u* 5
D~42D !

2~n112D !
. ~118!

More precisely, foru0→u* , we have

~u02u* !v0;
D~D24!~D22!

2~n11!~D2n21!2 ~n2n3/2!~n2n5!

[D2~n!. ~119!

The two roots ofD2(n) aren5n3/2 andn5n5 . They coin-
cide at the particular dimensionD52(11&). We note also
that u* 50 for D54. For D.2 and n5D21, Eq. ~117!
reduces tou1v5D22.

The points whereL~a! is extremum are determined by th
intersections between the solution curve in the (u,v) plane
and the curve defined by Eq.~117!. The number of extrema
can thus be determined by a graphical construction us
Figs. 1–4. This graphical construction depends on the va
of D andn and the different cases are shown in Figs. 7–
For D,2, there is no extremum~caseA8). For 2,D,4,
there is no extremum forn,n5 ~caseA8) and there is an
infinity of extrema for n.n5 ~case C8). They exhibit
damped oscillations toward the valueLs corresponding to
the singular solution~47!. For 4,D,10, there is one maxi-
mum forn,n5 ~caseB8) and there is an infinity of extrema
for n.n5 ~caseC8). For D.10, there is one maximum fo
n,n5 ~caseB8), there is an infinity of extrema forn5,n
,n2 ~caseC8), and there is no extremum forn.n2 ~case
D8). This last case corresponds to an overdamped evolu
towards the valueLs ~in our mechanical analogy of Sec
III C !. The appearance of a maximum forn,n5 when D
.4 was a surprise in view of preceding analysis forD53
@26,30,33#. The parameterL is restricted by the inequalitie
~see Figs. 11 and 12!

L<ln ~case A8!, ~120!

L,L~a1! ~casesB8 and C8!, ~121!

L<Ls ~case D8!. ~122!
6-12
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These inequalities determine a minimum energy~for givenM
andR! below which the system will either converge toward
complete polytrope with radiusR* ,R ~if it is stable! or
collapse.

In Figs. 13–18, we have plotted the generalized calo
curveL2h, giving the inverse temperature as a function
the energy, for different dimensionsD and polytropic index
n. This extends the results of our previous analysis inD
53 @33#. The number of turning points as a function ofD
andn is recapitulated in Fig. 19.

FIG. 7. Graphical construction determining the extrema ofL~a!
for D,2 ~specifically D51). The solid lines correspond to th
solution curves and the dashed lines to the curves defined by
~117!. The curves are labeled by the value of the polytropic indexn.
The vertical lines correspond to the asymptoteu5u* . For D,2,
there is no intersection so thatL~a! has no extremum.

FIG. 8. Same as Fig. 7 for 2,D,4 ~specificallyD53). The
geometrical construction changes forn5n3/2, n5D21, and n
5n5 . Typical cases are represented.
01611
c
f

G. Generalized thermodynamical stability

We now come to the generalized thermodynamical sta
ity problem. We shall say that a polytrope is stable if it co
responds to a maximum of the Tsallis entropy~free energy!
at a fixed mass and energy~temperature! in the microcanoni-
cal ~canonical! ensemble. The stability analysis has alrea
been performed forD53 @26,30,31,33# and is extended here
to a space of arbitrary dimension. This stability analysis c
be used to settle either~i! the dynamicalstability of stellar
and gaseous polytropes~see Sec. II!, or ~ii ! the generalized
thermodynamicalstability of self-gravitating Langevin par
ticles ~see Sec. IV!.

q.

FIG. 9. Same as Fig. 7 for 4,D,2(11&) ~specifically D
54.5). The geometrical construction changes forn5n3/2, n5n5 ,
andn5D21. Typical cases are represented. The indices label b
the solid curve and the closest broken curve.

FIG. 10. Same as Fig. 7 for 2(11&),D,10 ~specificallyD
56). The geometrical construction changes forn5n5 , n5n3/2,
andn5D21. Typical cases are represented. The indices label b
the solid curve and the closest broken curve.
6-13
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We start by the canonical ensemble which is simpler i
first approach. A polytropic distribution is a localminimum
of free energy at fixed mass and temperature if, and only
the second order variations~see Appendix D!

d2F5
n11

2n E p

r2 ~dr!2dDr1
1

2 E drdFdDr ~123!

are positive for any perturbationdr that conserves mass, i.e

E drdDr50. ~124!

FIG. 11. Evolution of the energy along the series of equilib
~parametrized bya! for 2,D,4 ~specificallyD53). For n,n5 ,
the curve has no extremum. ForD<2, theL~a! curves are mono-
tonic.

FIG. 12. Evolution of the energy along the series of equilib
~parametrized bya! for 4,D,10 ~specifically D54.5). For n
,n5 , the curve has one maximum. ForD.10, theL~a! curves are
similar to theh~a! curves in Fig. 6.
01611
a

f,
This is the condition of~generalized! thermodynamical sta-
bility in the canonical ensemble. Introducing the functio
q(r ) by the relation

dr5
1

SDr D21

dq

dr
, ~125!

and integrating by parts, we can put the second order va
tions of free energy in the quadratic form

FIG. 13. Generalized caloric curve forD,2 ~specifically D
51). Note that according to Eq.~98!, the potential energy is nec
essarily positive forD,2, so the regionL>0 is forbidden. We
have plotted in dashed line the branch of complete polytropes w
R* ,R defined by Eq.~109!.

FIG. 14. Generalized caloric curve forD52. We have plotted in
dashed line the branch of complete polytropes withR* ,R defined
by Eq. ~110!.
6-14
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d2F52
1

2 E0

R

drqFKg
d

dr S rg22

SDr D21

d

dr D1
G

r D21Gq.

~126!

FIG. 15. Generalized caloric curve for 2,D,4 ~specifically
D53). For n3,n,n5 , the inverse temperature presents a ma
mum but not the energy. Forn.n3 , there exists a region of nega
tive ~generalized! specific heatsC5dE/dT,0 in the microcanoni-
cal ensemble. We have plotted with the dashed line, the branc
complete polytropes withR* ,R defined by Eq.~109!.

FIG. 16. Generalized caloric curve for 4,D,10 ~specifically
D54.5). For n,n3 ~specifically n351.8), the energy presents
minimum but not the inverse temperature. Forn3,n,n3/2 ~specifi-
cally n3/252.25), both the energy and the temperature prese
minimum and the caloric curveh~L! rotates anticlockwise. This
implies that equilibrium states with positive as well asnegative
specific heatsC5dE/dT are stable in the canonical ensemble. Th
‘‘thermodynamical anomaly’’ arises because, as discussed in
III A, stellar polytropes withn,n3/2 are unphysical~the tempera-
ture is negative!. For n5n3/2 ~white dwarfs!, the curve makes an
angular point~see Appendix C!.
01611
The second order variations of free energy can be nega
~implying instability! only if the differential operator which
occurs in the integral has positive eigenvalues. We there
need to consider the eigenvalue problem

FKg
d

dr S rg22

SDr D21

d

dr D1
G

r D21Gql~r !5lql~r !, ~127!

with ql(0)5ql(R)50, in order to satisfy the conservatio
of mass. If all the eigenvaluesl are negative, the polytrope i
a minimum of free energy. If at least one eigenvalue is po

-

of

a

c.

FIG. 17. Continuation of Fig. 16. Forn3/2,n,n5 ~specifically
n552.6) both the energy and the temperature present an extrem
and the curve rotates clockwise~the curve makes a ‘‘loop’’!. The
region of negative specific heats is now unstable in the canon
ensemble, as it should. Forn.n5 ~specificallyn552.6), the energy
and temperature present an infinity of extrema.

FIG. 18. Generalized caloric curve forD.2(11&) ~specifi-
cally D55.1) andn5n3/2. For this particular index, the curve pre
sents an infinity~becausen3/2.n5) of angular points towards the
singular sphere~see Appendix C!.
6-15
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tive, the polytrope is an unstable saddle point. The poin
marginal stability in the series of equilibria is determined
the condition that the largest eigenvalue is equal to zerol
50). We thus have to solve the differential equation

Kg
d

dr S rg22

SDr D21

dF

dr D1
GF

r D21 50, ~128!

with F(0)5F(R)50. The same eigenvalue equation is o
tained by studying the linear stability of the Euler-Jea
equation@26,33#. Introducing the dimensionless variables d
fined previously, we can rewrite this equation in the form

d

dj S u12n

jD21

dF

dj D1
nF

jD21 50, ~129!

with F(0)5F(a)50. If

L[
d

dj S u12n

jD21

d

dj D1
n

jD21 ~130!

denotes the differential operator occurring in Eq.~129!, we
can check by using the Emden equation~45! that

L~jD21u8!5~n21!u8, L~jDun!5@~22D !n1D#u8.
~131!

Therefore, the general solution of Eq.~129! satisfying the
boundary conditions atj50 is

F~j!5c1FjDun1
~D22!n2D

n21
jD21u8G . ~132!

Using Eq.~132! and introducing the Milne variables~70!, the
conditionF(a)50 can be written

FIG. 19. This figure summarizes the structure of the calo
curve as a function of the dimensionD and the polytropic indexn.
The symbols are defined in the text. If we limit ourselves ton
>D/2 ~physical stellar polytropes!, the region AB8 showing a
‘‘thermodynamical anomaly’’ is not accessible.
01611
f

-
s
-

u05
~D22!n2D

n21
5us . ~133!

This relation determines the points at which a new eig
value becomes positive (l501). Comparing with Eq.~113!,
we see that a mode of stability is lost each time thath is
extremum in the series of equilibria, in agreement with t
turning point criterion of Katz@44# in the canonical en-
semble. When the curveh~a! is monotonic~casesA andD!;
the system is always stable because it is stable at low den
contrasts (a→0) and no change of stability occurs afte
ward. When the curveh~a! presents extrema~casesB and
C!, the series of equilibria becomes unstable at the poin
minimum temperature~or maximum mass! a1 . In Fig. 15,
this corresponds to a point of infinite specific heatC
5dE/dT→`, just before entering the region of negativ
specific heatsC,0. When the curveh~a! presents severa
extrema~caseC!, secondary modes of instability appear
valuesa2 , a3 ,... ~see Ref.@33# for D53). We note that
complete polytropes~with n,n5 if D.2) are stable in the
canonical ensemble ifD<2 and if (D.2,n<n3). They are
unstable otherwise. In thethermodynamical analogydevel-
oped in Refs.@26,33# this is a condition of nonlinear dynami
cal stability for gaseous polytropes with respect to the Eu
Jeans equations. In particular, the self-gravitating Fermi
at zero temperature~a classical white dwarf star! is dynami-
cally stable ifn3/2,n3 , i.e., D,4, and unstable otherwise.

According to Eq.~125!, the perturbation profile that trig
gers a mode of instability at the critical pointl50 is given
by

dr

r0
5

1

SDjD21

dF

dj
, ~134!

where F(j) is given by Eq.~132!. Introducing the Milne
variables~70!, we get

dr

r
5

nc1

SD
~vs2v !. ~135!

The density perturbationdr becomes zero at point~s! j i such
that v(j i)5vs . The number of nodes is therefore given b
the number of intersections between the solution curve in
(u,v) plane and the linev5vs . It can be determined by
straightforward graphical constructions in the Milne plan
using Figs. 1–4~see, e.g., Fig. 20!. When the solution curve
is monotonic~caseB!, the density perturbation profile ha
only one node. In particular, forn5n5 , the perturbation pro-
file at the point of marginal stability is given by

dr

r
5

~D12!c1

2SD

D~D22!2j2

D~D22!1j2 . ~136!

It vanishes forj (1)5AD(D22). When the solution curve
forms a spiral~caseC!, the density perturbationdr corre-
sponding to thekth mode of the instability hask zeros
j1 ,j2 ,...,jk,ak . In particular, the first mode of the insta
bility has only one node. For high modes of the instability

c
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ANOMALOUS DIFFUSION AND COLLAPSE OF SELF- . . . PHYSICAL REVIEW E 69, 016116 ~2004!
the zeros asymptotically follow a geometric progression w
ratio 1:exp$2p/A2D% ~see Ref.@33# for D53).

In the microcanonical ensemble, a polytrope is amaxi-
mumof entropy at fixed mass and energy if, and only if, t
second order variations~see Appendix D!

d2S5bH 2
1

2
gE p

~dr!2

r2 dDr2
1

2 E drdFdDr

2
2n

D~2n2D !

1

*pdDr F E S F1
D

2
g

p

r D drdDr G2J
~137!

are negative for any variationdr that conserves mass to fir
order@the conservation of energy has already been taken
account in obtaining Eq.~137!#. Now, using Eq.~125! and
integrating by parts, the second variations of entropy can
put in a quadratic form

d2S5E
0

RE
0

R

drdr8q~r !K~r ,r 8!q~r 8!, ~138!

with

K~r ,r 8!52
2n

D~2n2D !

1

*pdDr S F1
D

2
Kgrg21D 8

3~r !S F1
D

2
Kgrg21D 8

~r 8!1
1

2
d~r 2r 8!

3FKg
d

dr S rg22

SDr D21

d

dr D1
G

r D21G . ~139!

The problem of stability can therefore be reduced to
study of the eigenvalue equation

FIG. 20. Location of the turning points of temperature in t
(u,v) plane for systems with dimension 2,D,10 ~specificallyD
53). The lineu5us determines the extrema ofh and the linev
5vs determines the nodes of the density profiles that trigger
instabilities in the canonical ensemble.
01611
h

to

e

e

E
0

R

dr8K~r ,r 8!ql~r 8!5lql~r !, ~140!

with ql(0)5ql(R)50. The point of marginal stability (l
50) will be determined by solving the differential equatio

Kg
d

dr S rg21

SDr D21

dF

dr D1
GF

r D21 5
Kg2

DnSD
~2n2D !Vrg22

dr

dr
,

~141!

with

V5

*0
Rrg22

dr

dr
Fdr

*0
Rrgr D21dr

. ~142!

In arriving at this expression, we have used the relation

S F1
D

2
Kgrg21D 8

5
Kg

2n
~D22n!rg22

dr

dr
, ~143!

which results from the condition of hydrostatic equilibriu
~13! with the polytropic equation of state~30!. Introducing
the dimensionless variables defined previously, Eqs.~141!
and ~142! can be rewritten

d

dj S u12n

jD21

dF

dj D1
nF

jD21 5xu8, ~144!

with

x5
1

D
~n11!~2n2D !

*0
au8Fdj

*0
aun11jD21dj

, ~145!

and F(0)5F(a)50. Using identities~131!, we can check
that the general solution of Eq.~144! satisfying the boundary
conditions forj50 andj5a is

F~j!5
x

~n21!u01D2~D22!n
~jDun1u0jD21u8!.

~146!

The point of marginal stability is then obtained by substit
ing the solution~146! in Eq. ~145!. Using the identities~see
Appendix E!

E
0

a

jD21~u8!2dj5
aDu8~a!2

D122~D22!n S n1112
u0

v0
2

2D

v0
D ,

~147!

E
0

a

un11jD21dj5
aDu8~a!2

D122~D22!n

3S n1112
u0

v0
2

~D22!~n11!

v0
D ,

~148!

e
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E
0

a

unu8jDdj5
aDu8~a!2

D122~D22!n

3S 2D2~D22!
u0

v0
1

D~D22!

v0
D ,

~149!

which result from simple integrations by parts and from t
properties of the Lane-Emden equation~45!, it is found that
the point of marginal stability is determined by conditio
~117!. Therefore, the series of equilibria becomes unstabl
the point of minimum energy in agreement with the turni
point criterion of Katz@44# in the microcanonical ensemble
When the curveL~a! is monotonic~casesA8 and D8), the
system is always stable. When the curveL~a! presents ex-
trema ~casesB8 and C8), the series of equilibria become
unstable at the point of minimum energya18 . In Fig. 15, this
corresponds to the point where the specific heatC5dE/dT
50, passing from negative to positive values. Note that
branch of negative specific heats between the points CE
MCE is stable in the microcanonical ensemble although i
unstable in the canonical ensemble. When the curveL~a!
presents several extrema~caseC8), secondary modes of in
stability appear at valuesa28 ,a38 ,... We note that complete
polytropes~with n,n5 if D.2) are stable in the microca
nonical ensemble ifD,4 and unstable ifD>4. Owing to
the thermodynamical analogy, this is a condition of nonlin-
ear dynamical stability for stellar polytropes with respect
the Vlasov equation@26#. The difference between the dy
namical stability of gaseous polytropes (n<n3) and stellar
polytropes (n<n5) was related in Refs.@26,33# to a situation
of ensemble inequivalence~and the existence of a negativ
specific heat region! in thermodynamics. Since the calor
curve is monotonic inD52, we also conclude that poly
tropic vortices @20# are always nonlinearly dynamicall
stable with respect to the 2D Euler equation.

According to Eqs.~134! and ~146!, the perturbation pro-
file that triggers a mode of instability at the critical pointl
50 is given by

dr

r
5

x

SD

1

~n21!u01D2~D22!n
~D2nv2u0!,

~150!

where we have used the Emden equation~45! and introduced
the Milne variables~70!. The number of nodes in the pertu
bation profile can be determined by a graphical construc
similar to the one described in Refs.@3,45# for n5` ~iso-
thermal case!.

IV. SELF-GRAVITATING LANGEVIN PARTICLES

A. Nonlinear Smoluchowski-Poisson system

Let us consider a system ofN self-gravitating Brownian
particles described by the stochastic equations (i 51,...,N)

dr i

dt
5vi ,

dvi

dt
52¹F i2jvi1A2TjRi~ t !, ~151!
01611
at

e
nd
s

n

whereF i5F(r i ,t) is the self-consistent gravitational pote
tial created by the particles,2jvi is a friction force originat-
ing from the presence of an inert medium, andRi(t) is a
white noise satisfying^Ri(t)&50 and ^Ri ,a(t)Rj ,b(t8)&
5d i j dabd(t2t8). To simplify the problem, we consider th
high friction limit j→1`, wherej is the friction coefficient
@2#. This regime is achieved for timest@j21. In the mean-
field approximation, the evolution of the density of particl
is governed by the Smoluchowski equation@10#

]r

]t
5¹F¹~Dr!1

1

j
r¹FG , ~152!

coupled to the Newton-Poisson equation~4!. In the usual
case@2–4#, the diffusion coefficientD is constant and the
condition that the Boltzmann distributionr;e2F/T is a sta-
tionary solution of Eq.~152! is ensured by the Einstein rela
tion jD5T. It can be shown@2# that the SP system de
creases the free energyF5E2TS constructed with the
Boltzmann entropy. Hence, the equilibrium state minimiz

F5
1

2 E rFdDr1TE r ln rdDr ~153!

at fixedM andT.
Here we want to consider a more general situation

which the diffusion coefficientD depends on the densityr
while the drift coefficientj is still constant. In the absence o
drift, this would lead to a situation ofanomalous diffusion. In
the presence of drift, a notion ofgeneralized thermodynam
ics emerges@20#. Indeed, writing the diffusion coefficient in
the formD(r)5(1/j)p(r)/r with p8(r).0, we obtain the
generalized Smoluchowski equation

]r

]t
5¹F1

j
~¹p1r¹F!G . ~154!

In Ref. @20#, it is shown that generalized Smoluchows
equations of this type satisfy a form of the canonicalH theo-
rem. The Lyapunov functional, decreasing monotonica
with time, is

F5E rE
0

r p~r8!

r82 dr8dDr1
1

2 E rFdDr . ~155!

This can be interpreted as a free energy associated wi
generalized entropy functional~see Ref.@20# for more de-
tails!. The equilibrium state minimizesF at fixed M. In the
present context, this is a condition of generalized thermo
namical stability in canonical ensemble.

The generalized Smoluchowski equation~154! can be ob-
tained by combining the ordinary Fokker-Planck equat
with a Langevin equation of the form

dr

dt
52

1

j
¹F1A2p~r!

jr
R~ t !, ~156!

whereR(t) is a white noise. This generalized class of s
chastic equations was introduced in Ref.@20#. Whenp(r) is
6-18
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ANOMALOUS DIFFUSION AND COLLAPSE OF SELF- . . . PHYSICAL REVIEW E 69, 016116 ~2004!
a power law, Eq.~156! reduces to the stochastic equatio
studied by Borland@21# in connexion with Tsallis thermody
namics. Since the function in front ofR(t) depends onr , the
last term in Eq.~156! can be interpreted as a multiplicativ
noise. Note that the noise depends onr through the density
r~r !. Kaniadakis@22# also introduced a generalized Fokke
Planck equation arising from a modified form of transiti
probabilities. In these works, the Langevin particles evo
in an external potential. The case of Langevin particles
interactionwas considered by Chavanis@20#. He introduced
a generalized Fokker-Planck equation@see in particular Eq.
~81! of Ref. @20## valid for an arbitrary equation of statep
5p(r), or diffusion coefficientD(r), and for an arbitrary
binary potential of interactionu(r2r 8). This equation was
studied recently in Refs.@1–4# for an isothermal equation o
statep5rT ~constantD! and a gravitational interaction. Thi
study was extended in Ref.@46# to a Fermi-Dirac equation o
state. In this paper, we consider the case where the func
D(r) is a power law and writejD(r)5Krg21. This corre-
sponds to a polytropic equation of statep5Krg. Then, Eq.
~152! can be rewritten

]r

]t
5¹F1

j
~K¹rg1r¹F!G . ~157!

For the nonlinear Smoluchowski-Poisson system,
Lyapunov functional decreasing monotonically with time
@20#

F5
K

g21 E ~rg2r!dDr1
1

2 E rFdDr . ~158!

This can be interpreted as a free energy associated with
Tsallis entropy. In this context, the polytropic indexg plays
the role of theq parameter and the polytropic constantK
plays the role of the temperature~see Ref.@20# for details
and subtleties!. Therefore, keepingK fixed corresponds to a
canonical situation@33#. For g→1, we recover the Boltz-
mann free energy studied in Refs.@2,3#. For g55/3, i.e.,n
53/2, Eq. ~157! describes self-gravitating Brownian ferm
ons atT50 ~in D53) @46#.

The nonlinear Smoluchowski equation can be obtain
from a variational principle, called Maximum Entropy Pr
duction Principle, by maximizing the rate of free energyḞ
for a fixed total massM @1,20#. It is straightforward to check
that the rate of free energy dissipation can be put in the fo

Ḟ52E 1

rj
~K¹rg1r¹F!2dDr<0. ~159!

For a stationary solution,Ḟ50, and we obtain a polytropic
distribution which is a critical point ofF at fixedM. Consid-
ering a small perturbation around equilibrium, we can est
lish the identity@20#

d2Ḟ52ld2F<0, ~160!

wherel is the growth rate of the perturbation defined su
thatdr;elt. This relation shows that a stationary solution
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the nonlinear Smoluchowski-Poisson system is dynamic
stable for small perturbations~l,0! if and only if it is a local
minimumof free energy (d2F.0). In addition, it is shown
in Refs. @2,20# that the eigenvalue problem determining t
growth ratel of the perturbation is similar to the eigenvalu
problem~128! associated with the second order variations
free energy~they coincide for marginal stability!. This shows
the equivalence between dynamical and generalized ther
dynamical stability for self-gravitating Langevin particle
exhibiting anomalous diffusion~this result was obtained in
dependently by Shiino@24# in the specific context of Tsallis
thermodynamics!. In fact, our formalism is valid for more
general functionals than the Boltzmann or the Tsallis en
pies @20#. These functionals~155! arise when the diffusion
coefficient is of the general formD(r), not necessarily a
power law. We note that the NSP system satisfies a form
virial theorem@20#. For DÞ2, it reads

1

2
j

dI

dt
52K1~D22!W2DpbV, ~161!

where

I 5E rr 2dDr , ~162!

is the moment of inertia andpb the pressure on the bo
~assumed uniform!. ForD52, the term (D22)W is replaced
by 2GM2/2. For a stationary solutiondI/dt50, we recover
the virial theorem~91!.

Our model of self-gravitating Brownian~or Langevin!
particles has no clear astrophysical applications, so it m
be regarded essentially as atoy modelof gravitational dy-
namics. It may find application for the formation of plan
etesimals in the solar nebula since the dust particles exp
ence a friction with the gas and a noise due to small-sc
turbulence@47#. However, even in this context, the mod
has to be refined so as to take into account the attractio
the Sun and the rotation of the disk. In any case, the s
gravitating Brownian~or Langevin! gas model is well posed
mathematically, and it possesses a rigorous thermodynam
structure corresponding to thecanonical ensemble. There-
fore, it can be used as a simple model to illustrate so
aspects of the thermodynamics of self-gravitating syste
Since Eq.~154! minimizesF5W@r# at a fixed mass, it can
also be used as a powerful numerical algorithm to const
nonlinearly dynamically stable stationary solutions of t
Euler-Jeans equations~see Sec. II B!. Coincidentally, the SP
system also provides a simple model for the chemota
aggregation of bacterial populations@11#. The name chemo-
taxis refers to the motion of organisms induced by chem
signals. In some cases, the biological organisms secre
substance that has an attractive effect on the organisms th
selves. This is the case for the bacteriaEscherichia coli. In
the simplest model, the bacteria have a diffusive motion a
they also move systematically along the gradient of conc
tration of the chemical they secrete. Since the densityF(r ,t)
of the secreted substance is induced by the particles th
selves, the drift is directed toward the region of higher de
6-19
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sity. This attraction triggers a self-accelerating process un
point at which aggregation takes place. If we assume i
first step thatF(r ,t) is related to the bacterial densityr(r ,t)
by a Poisson equation, this phenomenon can be modele
the SP system. Now, it has been observed in many occas
in biology that the diffusion of the particles is anomalo
@11#. This is a physical motivation to study the NSP syste
in which the diffusion coefficient is a power law of the de
sity. In Sec. IV B we show that the NSP system admits s
similar solutions describing the collapse of the se
gravitating Langevin gas or of the bacterial populatio
These theoretical results are confirmed in Sec. V, where
numerically solve the NSP system.

B. Self-similar solutions of the nonlinear
Smoluchowski-Poisson system

From now on, we setM5R5G5j51 without loss of
generality. The equations of the problem become

]r

]t
5¹~K¹rg1r¹F!, ~163!

DF5SDr, ~164!

with boundary conditions

]F

]r
~0,t !50, F~1!5

1

22D
, K

]rg

]r
~1!1r~1!50,

~165!

for DÞ2. ForD52, we takeF(1)50 on the boundary. We
restrict ourselves to spherically symmetric solutions. In
grating Eq.~164! once, we can rewrite the NSP system in t
form of a single integrodifferential equation

]r

]t
5

1

r D21

]

]r H r D21F ~SDr!1/nQ
]r

]r

1
r

r D21 E
0

r

r~r 8!SDr 8D21dr8G J , ~166!

where we have set

Q[
K~11n!

nSD
1/n 5

1

nh121/n . ~167!

The quantityQ can be seen as a sort of generalized temp
ture ~sometimes called a polytropic temperature@33#! and it
reduces to the ordinary temperatureT for n→1`. We note
that the proper description of a gas of Langevin particles
interactions is the canonical ensemble whereQ is fixed.
However, we can formally set up a microcanonical desc
tion of self-gravitating Langevin particles by letting the tem
peratureQ(t) depend on the time so as to conserve the to
energy:

E5
D

2

nSD
1/n

11n E Q~ t !r11~1/n!dDr1
1

2 E rFdDr .

~168!
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The two situations have been considered in the case of
gravitating Brownian particles (n→1`) in Refs. @1–4#.
Note that a more correct microcanonical description of p
ticles in interaction is furnished by the~generalized! Boltz-
mann and Landau equations@23#.

The NSP system is equivalent to a single different
equation

]M

]t
5QS 1

r D21

]M

]r D 1/nF]2M

]r 2 2
D21

r

]M

]r G1
M

r D21

]M

]r
,

~169!

for the quantity

M ~r ,t !5E
0

r

r~r 8,t !SDr 8D21dr8, ~170!

which represents the mass contained within the sphere
radiusr. The appropriate boundary conditions are

M ~0,t !50, M ~1,t !51. ~171!

It is also convenient to introduce the functions(r ,t)
5M (r ,t)/r D satisfying

]s

]t
5QS r

]s

]r
1DsD 1/nS ]2s

]r 2 1
D11

r

]s

]r D1S r
]s

]r
1DsD s.

~172!

For n→1`, these equations reduce to those studied in R
@2–4# in the isothermal case. We look for self-similar sol
tions of the form

r~r ,t !5r0~ t ! f S r

r 0~ t ! D , r 05S Q

r0
121/nD 1/2

. ~173!

The radiusr 0 defined by the foregoing equation provides
typical value of the core radius of an incomplete po
trope ~with n.n5). It reduces to the King’s radius@19# as
n→1`. In terms of the mass profile, we have

M ~r ,t !5M0~ t !gS r

r 0~ t ! D with M0~ t !5r0r 0
D ,

~174!

and

g~x!5E
0

x

f ~x8!SDx8D21dx8. ~175!

In terms of the functions, we have

s~r ,t !5r0~ t !SS r

r 0~ t ! D with S~x!5
g~x!

xD . ~176!

Substitutingansatz~176! into Eq. ~172!, and using the
definition of r 0 in Eq. ~173!, we find that
6-20
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dr0

dt
S2

r0

r 0

dr0

dt
xS85r0

2~xS81DS!1/nS S91
D11

x
S8D

1r0
2~xS81DS!S, ~177!

where we have setx5r /r 0 . We now assume that there exis
a such that

r0;r 0
2a . ~178!

Inserting this relation into Eq.~177!, we find

dr0

dt S S1
1

a
xS8D5r0

2F ~xS81DS!1/nS S91
D11

x
S8D

1~xS81DS!SG , ~179!

which implies that (1/r0
2)(dr0 /dt) is a constant that we ar

bitrarily set equal toa. This leads to

r0~ t !5
1

a
~ tcoll2t !21, ~180!

so that the central density becomes infinite in a finite ti
tcoll . The scaling equation now reads

aS1xS85~xS81DS!1/nS S91
D11

x
S8D1~xS81DS!S.

~181!

For x→1`, we have asymptotically

S~x!;x2a, g~x!;xD2a, f ~x!;x2a. ~182!

In the canonical ensemble whereQ is constant, Eqs.~173!
and ~178! lead toa5an , with

an5
2n

n21
. ~183!

Note that forn→`, we recover the result of Ref.@3#, a`

52. Equation~182! implies that for largex, r;(D2a)S
.0, which enforcesa,D ~this also guarantees that the ma
of the power-law profiler5Cr2a at t5tcoll is finite!. The
limit value an5D corresponds ton5n3 . Therefore, there is
no scaling solution forn,n3 . This is consistent with our
finding that the collapse occurs only forn.n3 . For n,n3
andh.vn , the system converges toward a complete po
trope with radiusR* ,1 which is stable~see Sec. III G and
Fig. 15!. For n3,n,n5 and h.h(a1), we can formally
construct a complete polytrope with radiusR* ,1, but this
structure is unstable~Sec. III G! so that the system undergoe
a gravitational collapse.

In the microcanonical ensemble, the value ofa>an can-
not be obtained by a dimensional analysis. It will be selec
by the dynamics. In the casen→1`, we found in Ref.@3#
that Eq.~181! for the scaling profile has physical solution
only for 2<a<amax(D) ~with amax(D53)52.209733...).
For arbitraryn, such aamax(D,n)>an also exists~see Sec.
01611
e
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d

V!. It is easy to see that the maximum value fora leads to
the maximum divergence of the temperature and entro
Therefore, it is natural to expect that the valueamax will be
selected by the dynamics except if some kinetic constra
forbid this natural evolution~see below!. In fact, as already
noted in Ref.@2#, a value ofa.an poses problem with re-
spect to the conservation of energy. We recall~and general-
ize! the argument below. According to Eqs.~173!, ~178! and
~180!, during collapse, the temperature behaves as

Q;r0
121/n22/a;~ tcoll2t !2~2/an22/a!, ~184!

and the kinetic energy~34! behaves as

K;QE
0

1

rg~r ,t !r D21dr

;Q~r0r 0
a!gE

r 0

1

r D212gadr;QE
r 0

1

r D212gadr.

~185!

First consider the casen.n5 . If a,D/g ~which is the case
in practice sincean,D/g implies n.n5), the integral is
finite and the kinetic energy behaves asK;Q. Therefore, it
divergesat tcoll for anya.an . On the other hand, the sca
ing contribution to the potential energy behaves as

W;E
0

1 M2~r ,t !

r D21 dr

;~r0r 0
a!2E

r 0

1

r D1122adr;E
r 0

1

r D1122adr. ~186!

If a,(D12)/2 ~which is the case in practice sincean
,(D12)/2 impliesn.n5), the scaling part ofW remains
finite at tcoll . Energy conservation would then imply thata
5an . In a first series of numerical experiments reachi
moderately high values of the central density@2#, we mea-
sured ~by different methods! a scaling exponenta.2.2
.a`52 ~for the isothermal casen5`). Combined with the
fact that the Smoluchowski-Poisson system must lead t
diverging entropy, we argued thatamax is selected by the
dynamics~while being careful not to rigorously reject th
possibility thata5a`52). Then, in order to account fo
energy conservation, we proposed a heuristic scenario sh
ing how subscaling contributions could lead to a divergen
of the potential energy. In fact, the numerical simulatio
were not really conclusive in showing the divergence of
temperature, as the expected exponent is very small (2an
22/amax50.09491..., forD53 andn→1`). Recently, we
conducted a new series of numerical simulations allowing
to achieve much higher values of density~see Sec. V!. These
simulations tend to favor a value ofa5an leading to a finite
value of the temperature attcoll . However, the convergenc
to the valuean is obtained for values oft very close totcoll
and, at intermediate times for which the temperature has
reached its asymptotic value, the numerical scaling funct
tends to display aneffective exponentbetweenan andamax.
This situation is reminiscent of the (D52,n51`) case
studied in Ref.@3#, although the situation is not exactl
6-21
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equivalent. Numerical simulations of the (D53,n51`)
case were conducted independently in Ref.@9#, and also fa-
vor a value ofa5an . Note that there is no rigorous resu
proving thata5an in the microcanonical situation, so th
point remains an open mathematical problem.

For n,n5 , the kinetic and potential energies diverge in
consistent way as

K;QE
r 0

1

r D212gadr;Qr 0
D2ga;r0

22~D12!/a , ~187!

W;E
r 0

1

r D1122adr;r 0
D1222a;r0

22~D12!/a . ~188!

However, in the microcanonical ensemble, the system is
pected to reach a self-confined polytrope forn,n5 and L
.ln since it is stable~see Sec. III G and Fig. 15!. Probably,
the choice of evolution will depend on a notion ofbasin of
attraction as in Ref.@2#.

We now focus on self-gravitating Brownian particlesn
5`). In the case of collapse, the previous discussion sh
that the system has thedesire to achieve a value ofa.2,
leading to a divergence of the temperature and entropy. T
is indeed a natural evolution in a thermodynamical sen
This is also consistent with the notion ofgravothermal ca-
tastropheintroduced in the context of globular clusters@48–
51#. However, the energy constraint~168! seems to preven
this natural evolution and enforcesa52 ~the divergence of
the entropy occurs in the post-collapse regime@4#!. This is
related to the assumption that the temperature isuniform,
although this assumption clearly breaks down during the
stage of the collapse. Therefore, we expect that if the t
perature is not constrained to remain uniform, the sys
will select a value ofa.2 as in other models of microca
nonical gravitational collapse@49–51#. Below, we give a
heuristic hint as to how this can happen. We consider
Smoluchowski equation

]r

]t
5¹@¹~Tr!1r¹F#, ~189!

whereT5T(r ,t) is now position dependent. In any mod
where the temperatureT(r ,t) satisfies alocal conservation of
energy, we expect the following scaling:

T~r ,t !5T0~ t !uS r

r 0~ t ! D with u~x!;x22a whenx→1`.

~190!

Such a scaling is indeed observed in the globular clu
model of Ref.@51#. The decay exponent is obtained by usi
the definition ofT0;r0r 0

2 and the fact that the temperature
distancesr @r 0 should be of order unity. The precise dens
and temperature profiles and the value ofa depend on the
model considered for the energy transport equation. It is
our purpose to discuss a precise model in the present p
and we postpone this study for a future work@34#. However,
we can give an analytical argument showing whya.2
01611
x-

s

is
e.

te
-

m

e

er

ot
er

should now be selected in a unique way. Equation~190!
shows that temperature scales as the potentialF since

F~r ,t !5F~1!2E
r

1

s~r 8,t !r 8dr8

'F~1!2r0r 0
2E

r /r 0

1/r 0
S~x!xdx'2T0E

r /r 0

1`

S~x!xdx.

~191!

The scaling function forF(r ,t) is then

f~x!52E
x

1`

S~x8!x8dx8;x22a when x→1`.

~192!

Equations~190!, ~191!, and~192! imply that both the kinetic
and potential energies remain bounded for all timest
<tcoll , at least fora,(D12)/2, even if the central tem
peratureT0(t) diverges. Indeed, the temperature increase
the core but the core mass goes to zero so that the kin
energy of the core;M0T0 goes to zero. On the other han
the temperature remains of order unity in the halo leading
a finite kinetic energy in the halo. This ‘‘core-halo’’ structur
for the temperature is more satisfactory than a model
which the temperature is uniform everywhere, even in
collapse phase. Before introducing a precise equation
T(r ,t) @34#, we make the reasonable claim that the tempe
ture and potential energy are simply proportional in the c
region as they exhibit similar scaling relations. Definin
T0(t) such thatu(0)51, we end up with the hypothesis

u~x!5
f~x!

f~0!
5

l

D E
x

1`

S~x8!x8dx8, ~193!

with

l52
D

f~0!
5

D

*0
1`S~x8!x8dx8

. ~194!

Using Eq.~193!, we find that the scaling equation forS(x) is
now

aS1xS85
l

D
f~x!S S91

D11

x
S8D1S 12

l

D DS~xS81DS!.

~195!

For a givenl, this equation is an eigenvalue problem ina. In
the limit of large dimension and proceeding exactly along
lines of Ref. @3#, it can be seen thatS;O(D21) and l
;O(D0). Using the method of Ref.@3#, S(x) anda can be
computed easily up to orderO(D21), as a function ofl and
z5DS(0)/2. Now, imposing the constraint of Eq.~194!, this
selects auniquevalue for a. After straightforward calcula-
tions, we find a simple parametrization ofl anda as a func-
tion of z5DS(0)/2.2:

a225
4

D
~122z21!1O~D22!, ~196!
6-22
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l52~12z21!~122z21!1O~D21!, ~197!

which can be recast in the forms

a225
2

D
~A114l21!1O~D22!, ~198!

S~0!5
8

D
~32A114l!211O~D22!. ~199!

Equation~197! implies that forl>2 @up to orderO(D21)],
there is no solution to the scaling equation, and that fol
,2, there is a uniquea corresponding to a physical solution
In general, the actual value ofl will be selected dynamically
by an additional evolution equation for the temperature p
file. However, assumingl.1 is natural~although this point
needs to be confirmed!, since it corresponds naively to
local energy conservation condition

D

2
T~r ,t !;2

1

2
F~r ,t !. ~200!

In that case, we obtain

a225
2

D
~A521!1O~D22!. ~201!

The above argument is a strong indication that if the unifo
temperature constraint is abandoned, a nontrivial value
a.2 will be selected. We conjecture that this eigenva
will be close to amax.2.21, as found in other models o
microcanonical gravitational collapse with a nonunifor
temperature@49–51#.

V. NUMERICAL SIMULATIONS

In this section, we numerically illustrate some of the th
oretical results presented in the previous sections, but
restrain ourselves toD53. We first consider the dynamics i

FIG. 21. Evolution of the density profiler(r ,t) for n53/2 and
Q50.1 ~corresponding toh.vn). The profile converges to a com
plete polytrope strictly confined inside the box~thick line!. The
dashed line is the initial uniform density profile.
01611
-

or
e

-
e

the canonical ensemble~fixed Q!. In Fig. 21, we show the
different steps of the formation of a self-confined polytro
of indexn53/2,n353 similar to a classical ‘‘white dwarf’’
star. In this range ofn, the system always converges to a
equilibrium state~see Fig. 15!. If h,vn the equilibrium
state is confined by the box~incomplete polytrope! while for
h.vn the density vanishes atR* ,R ~complete polytrope!.
In Fig. 22, we illustrate the collapse dynamics at low te
peratures forn54P@n3 ,n5# andn5`.n555. This is com-
pared to the predicted scaling profiles. The convergenc
scaling is slower forn54 (a58/3) than forn5` (a52).
This is expected since, in the former case,r 0;r0

21/a de-
creases more slowly asa is larger. Thus, the scaling regim
r 0!1 is reached in a slower way. For instance, for com
rable final densities of order 106, and for the considered
temperatures, we find that the minimumr 0 obtained forn
54 is roughly four times bigger than in then5` simula-
tions. Forn5` and in the largeD limit, we showed in Ref.
@3# that the scaling functionS(x) takes the form

S~x!5
a

D F11S 12
a

2zD S x2

x0
221D S x2

x1
2 11D ~a/2!21G21

,

~202!

where x0 is such that S(x0)5a/D. The quantities z
5DS(0)/2 anda(z) have been exactly calculated in th
limit. In the present case, and for a givenn @yielding an
52n/(n21)], we computeS(0), by assuming the above
functional form. The parametersx0 , x1 , and S(0) are nu-
merically calculated by imposing the exact value forS9(0)
extracted from Eq.~181!, as well as the two conditions tha

FIG. 22. Forn54 (a458/3) andQ50.1 ~canonical descrip-
tion!, we plotS(r ,t)/S(0,t) as a function ofr /r 0(t), wherer 0(t) is
defined by Eq.~173!, for different times corresponding to centra
densities in the range 23102– 43105 ~bottom data collapse!. This
is compared to the scaling function obtained by solving Eq.~181!
numerically ~dotted line!. The same is plotted in the casen5`
(a`52), for which the scaling profile is known analytically@3#:
S(x)/S(0)5(11x2)21 ~upper data collapse!. The two curves have
been shifted for clarity. In then5` case, the asymptotic scalin
profile ~dotted line! is almost indistinguishable from the data co
lapse. Dashed lines have the respective slopes28/3 and22.
6-23
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x0 must satisfy~see Ref.@3# for more details!. The compari-
son of this approximate theory with actual numerical data
satisfactory~see Fig. 23!. Note that we have been unable
develop a largen perturbation theory in the same spirit as t
largeD expansion scheme derived in Ref.@3#.

As explained in Sec. IV, the situation in the microcano
cal ensemble~whereQ5Q(t) evolves with time in order to
conserve energy! is less clear. As in the casen5` studied in
Ref. @3#, the scaling equation admits a physical solution
anyan<a<amax(D,n). In Fig. 24, we plotamax(D53,n), as
well as the corresponding value ofS(0), as afunction of n.

FIG. 23. We plotS(0) as a function ofn ~full line!, and compare
it to a simple theory explained in the text, which is inspired by t
largeD perturbation introduced in Ref.@3# ~dashed line!. Note that
S(0).41C/n1O(n22) for largen with C.19.

FIG. 24. We plotamax(D53,n) as a function ofn ~top plot!, as
well as the associated value of 1/4 lnS(0) ~bottom plot!. The hori-
zontal dashed line represents the asymptotic value ofamax for n
→1`, and we find amax(D53,n)'amax(D53,n5`)1C3 /n
1O(n22) for large n, with C3;2.7. For n<n555, amax5D2

532 ~strictly speaking, the scaling solution associated toa5D
53 does not exist belown555). We observe that lnS(0);(n
25)21/4 provides an excellent fit ofS(0) for nP@5,10#. We have
also plottedan52n/(n21) ~thick line!. The scaling equation~181!
admits solutions foran<a<amax. The two curves intersect whe
an5D which corresponds ton5n3 . There is no scaling collaps
solution forn<n3 .
01611
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As explained previously, it is doubtful that a scaling actua
develops with a.an when the temperature is uniform
However, a pseudoscalingshould be observed witha
.amax. In Fig. 25, we present new simulations (D53,n
5`) confirming that the observed scaling dynamics is be
described bya5amax than by a52, in the time/density
range achieved. Such a value ofa implies that the tempera
ture would diverge with a small exponent@Q(t)
;r0(t)122/amax, with 122/amax50.09491...]. However, in
the range of accessible densitiesr05231021;106, numeri-
cal data tend to suggest that the temperature converges
finite value with an infinite derivative (dQ/dt)(tcoll)51`
as t→tcoll . This convergence of the temperature was o
served independently in Ref.@9#. Thus, we conclude that th
system first develops an apparent scaling witha&amax, be-
fore slowly approaching the asymptotic scaling regime w
a52. In any case, it is clear that if thea52 scaling is the
relevant one, the scaling regime is approached much m
slowly than in the canonical ensemble~compare Figs. 25 and
22!. This is a new aspect of the inequivalence of statisti
ensembles for self-gravitating systems.

VI. CONCLUSION

In this paper, we have discussed the structure and stab
of self-gravitating polytropic spheres by using a formalis

FIG. 25. Forn51` and E520.45 ~microcanonical descrip-
tion!, we plot S(r ,t)/S(0,t) as a function ofr /r 0(t) where r 0(t)
;r0(t)1/a, for times corresponding to central densities in the ran
23102– 43105 ~for comparison, our previous simulations@2# did
not exceedr0;1000). We try both valuesa`52 ~bottom dashed
line! anda5amax52.209733...~top dashed line!, and compare both
data collapses to the associated scaling function~dotted lines!. The
two curves have been shifted for clarity. The scaling associate
amax is clearly more convincing than that fora52, especially at
large distances. However, our simulations also suggest thatQ(t)
;r0(t)122/amax does not diverge attcoll ~see the insert where a lin
of slope 122/amax'0.09491... has been drawn as a guide to
eye!, so that the asymptotic scaling should correspond toa52. This
apparent ‘‘paradox’’ clearly shows that the convergence to the li
valuea5an is extremely slow, suggesting an intermediate pseu
scaling regime withan<a<amax.
6-24
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of generalized thermodynamics@20#. This formalism allows
us to present and organize the results in an original man
What we mean by generalized thermodynamics is an ex
sion of the usual variational principle of ordinary thermod
namics ~maximization of the Boltzmann entropySB at a
fixed massM and energyE! to a larger class of functional
~playing the role of ‘‘generalized entropies’’!. This varia-
tional problem can arise in various domains of physics~or
biology, economy,...! for different reasons. In any case, it
relevant to develop athermodynamical analogyand use a
vocabulary borrowed from thermodynamics~entropy, tem-
perature, chemical potential, caloric curve, free energy,
crocanonical and canonical ensembles,...! even if the initial
problem giving rise to this variational problem is not direc
connected to thermodynamics. Thus, we can directly tra
pose the methods developed in the context of ordinary t
modynamics~e.g., Legendre transforms, turning point arg
ments, bifurcations,...! to a new context. For example, in th
present study, the maximization of the Tsallis entropy a
fixed mass and energy is a condition of nonlinear dynam
stability for stellar polytropes via the Vlasov equation a
for polytropic vortices via the Euler equation. On the oth
hand, the minimization of the Tsallis free energy at a fix
mass is connected to the nonlinear dynamical stability
polytropic stars via the Euler-Jeans equations. It is als
condition of thermodynamical stability~in a generalized
sense! for self-gravitating Langevin particles experiencin
anomalous diffusion and a condition of dynamical stabil
for bacterial populations. Although the formalism is the sa
for all these systems, the results have a very different ph
cal interpretation. Our results may also have unexpected
plications in other domains of physics that we are not aw
of.

From a technical point of view, we have provided t
complete equilibrium phase diagram of self-gravitating po
tropic spheres for an arbitrary value of the polytropic inden
and space dimensionD. Our study, generalizing the classic
studies of Emden@52# and Chandrasekhar@18#, shows how
the phase portraits previously reported in the literature~for
particular dimensions and particular polytropic indices! con-
nect to each other in the full parameter space. From the g
metrical structure of the generalized caloric curves, we
immediately determine the domains of stability of the po
tropic spheres by using the turning point method@44#. These
stability results have been confirmed by explicitly evaluat
the second order variations of the entropy and free ene
This eigenvalue method provides, in addition, the form of
density profile that triggers the instability at the critic
points. Interestingly, this study can be performed analytica
or by using simple graphical constructions in the Mil
plane. We have found that complete stellar polytropes@with
n,n55(D12)/(D22) if D.2] are stable forD<4 and
unstable forD.4. On the other hand, complete gaseo
polytropes are stable forD<2 and for @D.2,n<n3
5D/(D22)# and unstable for (D.2,n.n3). Polytropes
with index n3/25D/2 correspond to classical white dwa
stars ~i.e., a self-gravitating Fermi gas atT50). They are
self-confined only forD,2(11&) and they are stable
only for D,4. For D.4, quantum mechanics is not ab
01611
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to prevent gravitational collapse, even in the nonrelativis
regime. In this sense,D54 is a critical dimension. There
fore, the dimension of space of our universe 2,D53,4 is
bounded by two critical dimensions. It seems that this
mark has never been made before. The description of ph
transitions in the self-gravitating Fermi gas at a nonzero te
perature in dimensionD will be considered in a future pape
@53#. Other possible extensions of our work would be
consider different equations of state such as the modi
isothermalp52T ln(12r/r0) associated with an ‘‘entropy’’
functional S@r#52*$r ln r1(r02r)ln(r02r)%dDr or the
logotropic equation of statep5pc@11A ln(r/rc)# @54# asso-
ciated withS@r#5pcA* ln rdDr .

The concept of generalized thermodynamics is rigorou
justified in the case of stochastic~Langevin! particles expe-
riencing anomalous diffusion. This happens when the dif
sion coefficient in the Fokker-Planck equation depends
the density of particles while the friction or drift is constan
In this paper, we have explicitly studied the nonline
Smoluchowski-Poisson system~for self-gravitating Langevin
particles! corresponding to a power-law dependence of
diffusion coefficient. This particular situation is connected
Tsallis generalized thermodynamics, but more gene
Fokker-Planck equations can be constructed and stu
@20#. The connection between thermodynamical and dyna
cal stability for this type of generalized Fokker-Planck equ
tions was established in a general case in Ref.@20#. The
nonlinear Smoluchowski-Poisson system can have phys
applications for the chemotaxis of bacterial populations. T
collapse and aggregation of bacterial populations are sim
in some respects, to the phenomenon ofcore collapsein
globular clusters~or to the Jeans instability in molecula
clouds! and the neglect of inertia is justified in biology, a
variance with astrophysics. In addition, biological syste
are likely to experience anomalous diffusion so that the N
system can provide an interesting and relevant model for
problem of chemotaxis. We have shown that the solutions
the NSP system can either converge toward a complete p
trope or an incomplete polytrope restrained by a box, or le
to a situation of collapse. The determination of the scal
exponenta in the microcanonical ensemble~constant en-
ergy! is difficult due to the extremely slow entry of the sy
tem in the scaling regime. However, it seems to be giv
asymptotically by an52n/(n21) ~a52 for isothermal
spheres! as in the canonical ensemble~constant temperature!.
We expect that an exponenta.an will be selected when the
temperature is allowed to vary in space and time. This pr
lem will be considered in a future study@34#.

APPENDIX A: GRAVITATIONAL FORCE
IN D DIMENSIONS

The gravitational field produced inr by a distribution ofN
particles with massm in a space of dimensionD is

F52(
i 51

N

Gm
r2r i

ur2r i uD . ~A1!
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For D51, the gravitational field created by a particle is i
dependent on the distance. Thus, an object located inx ex-
periences a force~by unit of mass! F5Gm(N12N2),
whereN1 is the number of particles in its right (xi.x) and
N2 the number of particles in its left (xi,x).

The external gravitational field created by a spherica
symmetric distribution of matter with massM is

F52¹F52
GM

r D21 er . ~A2!

For DÞ2, the gravitational potential is

F52
GM

~D22!r D22 , ~A3!

where the constant of integration has been taken equa
zero~this impliesF50 at infinity for D.2). ForD52, we
have

F5GM ln~r /R!, ~A4!

where we have takenF(R)50.

APPENDIX B: VIRIAL THEOREM IN D DIMENSIONS

We define the virial of the gravitational force in dime
sion D by

VD5E rr•¹FdDr . ~B1!

For a spherically symmetric system, the Gauss theorem
be written

dF

dr
5

GM~r !

r D21 , M ~r !5E
0

r

rSDr 8D21dr8. ~B2!

Therefore, the virial is equivalent to

VD5E
0

R dM

dr

GM~r !

r D22 dr5
G

2 E
0

R dM2

dr

1

r D22 dr. ~B3!

In D52, one has, directly,

V25
GM2

2
. ~B4!

If now DÞ2, we obtain, after an integration by parts,

VD5
GM2

2RD22 1
1

2
~D22!E

0

R GM~r !2

r D21 dr, ~B5!

or, using Eq.~B2!,

VD5
GM2

2RD22 1
1

2G
~D22!E

0

RS dF

dr D 2

r D21dr. ~B6!

Now, using the Poisson equation~4!, the potential energy can
be written
01611
y

to

an

W5
1

2 E rFdDr5
1

2SDG E FDFdDr . ~B7!

Integrating by parts, we obtain

W5
1

2SDG H F~R!
dF

dr
~R!SDRD21

2E
0

RS dF

dr D 2

r D21SDdrJ . ~B8!

The gravitational force and the gravitational potential at
edge of the box are given by Eqs.~A2! and~A3!. Introducing
these results in Eq.~B8! and comparing with Eq.~B6!, we
obtain

VD52~D22!W, DÞ2. ~B9!

By using the virial tensor method introduced by Cha
drasekhar@19#, we can show that the foregoing relation r
mains valid if the system is not spherically symmetric.

If now the system is in hydrostatic equilibrium, we hav

¹p52r¹F. ~B10!

Inserting this relation in the virial~B1! and integrating by
parts, we get

VD52 R pr•dS12K, ~B11!

where we have usedK5(D/2)*pdDr . This is the expression
of the virial theorem in its general form. Assuming now th
pb is uniform on the domain boundary~which is true at least
for a spherically symmetric system!, we have

R pr•dS5pb R r•dS5pbE ¹•rdDr5pbDVDRD.

~B12!

Therefore, for a spherically symmetric system, the vir
theorem reads

2K2VD5p~R!DVDRD, ~B13!

whereVD is given by Eqs.~B4! and ~B9!.
It is interesting to consider a direct application of the

results. InD52, the virial theorem reads

2K2
GM2

2
52pR2p~R!. ~B14!

For an isothermal gasK5MT so that

2MT2
GM2

2
52pR2p~R!. ~B15!

From this relation, we conclude that there exists an equi
rium solution withp(R)50 at Tc5GM/4. We therefore re-
cover the critical temperature of an isothermal se
gravitating gas in two dimensions~see, e.g., Ref.@3#!. At T
6-26
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5Tc , the density profile is a Dirac peak so thatp(R)50. For
T,Tc , there is no static solution and the system undergo
gravitational collapse. This collapse was studied in Ref.@3#
with the Smoluchowski-Poisson system.

APPENDIX C: SPECIAL PROPERTIES
OF n3Õ2 POLYTROPES

In this appendix, we consider polytropes with indexn3/2
5D/2 in a space of dimensionD>4. They correspond to
D-dimensional ‘‘white dwarf’’ stars. According to Eq.~113!,
the curveh~a! is extremum for

u05
D~D24!

D22
. ~C1!

It is easy to check that this particular value is also solution
Eq. ~117! determining maxima ofL~a!. We conclude there-
fore that the functionsh~a! andL~a! achieve extremal val-
ues for the same values ofa in the series of equilibria. This
implies that the generalized caloric curveh~L! of n3/2 poly-
tropes displaysangular points~see Figs. 16 and 18!.

APPENDIX D: SECOND ORDER VARIATIONS OF
GENERALIZED ENTROPY AND FREE ENERGY

According to Eq.~35!, the variations of entropy up to
second order are

dS5
D22n

2 S bE dpdDr1dbE pdDr1E dbdpdDr D .

~D1!

On the other hand, according to the polytropic equation
state~30!, we have

dp5g
dr

r
p1

gp

n

~dr!2

2r2 1
dK

K
p1g

dK

K

dr

r
p. ~D2!

From Eqs.~24! and ~31!,

K;b~D22n!/2n, ~D3!

so that to second order

dK

K
5

D22n

2n

db

b
1

~D22n!~D24n!

8n2 S db

b D 2

. ~D4!

Inserting Eqs.~D4! and ~D2! in Eq. ~D1!, we get

dS5
D22n

2 FbgE dr

r
pdDr1

bg

2n E p

r2 ~dr!2dDr

1
D

2n E pdbdDr1
gD

2n
dbE dr

r
pdDr

1
D~D22n!

8n2

~db!2

b E pdDr G . ~D5!

Now, the conservation of energy~34! implies that
01611
a

f

f

05dE5
D

2 E dpdDr1
1

2 E drdFdDr1E FdrdDr .

~D6!

Inserting Eqs.~D2! and ~D4! into Eq. ~D6!, we obtain

D22n

2 F gD

D22n
bE dr

r
pdDr

1
gD

2n~D22n!
bE p

~dr!2

r2 dDr1
D

2n E dbpdDr

1
D~D24n!

8n2

~db!2

b E pdDr1
gD

2n
dbE dr

r
pdDr G

1
1

2
bE drdFdDr1bE FdrdDr50. ~D7!

Subtracting this relation from Eq.~D5!, we get

dS52bgnE dr

r
pdDr2

1

2
bgE p

~dr!2

r2 dDr

1
D~D22n!

8n

~db!2

b E pdDr

2
1

2
bE drdFdDr2bE FdrdDr . ~D8!

Now, to first order, Eq.~D7! yields

db

b
52

4n

D~D22n!

E FdrdDr1
D

2
gE dr

r
pdDr

E pdDr
.

~D9!

Substituting this relation in Eq.~D8!, we find that the second
order variations of entropy are given by Eq.~137!. To com-
pute the second order variations of free energyF5E2TS,
we can use Eqs.~D5! and ~D6! with db50. This yields Eq.
~123!.

APPENDIX E: SOME USEFUL IDENTITIES

In this appendix we establish identities~147!–~149! that
are needed in the stability analysis of Sec. III G. Using
integration by parts, we have

E
0

a

u8jDundj5E
0

a

jD
d

dj S un11

n11Ddj5
1

n11
aDun11~a!

2
D

n11 E0

a

jD21un11dj. ~E1!

Using the Lane-Emden equation~45! and integrating by
parts, we obtain
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E
0

a

un11jD21dj52aD21u~a!u8~a!1E
0

a

~u8!2jD21dj.

~E2!

Using the relation

E
0

a j~11D !/2u8

j

d

dj
~j~11D !/2u8!dj

5aDu8~a!22E
0

a j~11D !/2u8

j

d

dj

3~j~11D !/2u8!dj1E
0

a

jD21~u8!2dj, ~E3!

which results from a simple integration by parts, we get

E
0

a

jD21~u8!2dj52aDu8~a!2

12E
0

a

j~D21!/2
d

dj
~j~11D !/2u8!u8dj,

~E4!

or, equivalently,

DE
0

a

jD21~u8!2dj5aDu8~a!222E
0

a

jDu9u8dj.

~E5!

Using the Lane-Emden equation~45!, we find that

~D22!E
0

a

jD21~u8!2dj52aDu8~a!222E
0

a

jDu8undj.

~E6!

We have three equations~E1!, ~E2! and ~E6! for three un-
known integrals. Solving this system of algebraic equatio
and introducing the Milne variables~70!, we obtain the iden-
tities ~147!–~149!.
ut

iff.
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APPENDIX F: DYNAMICAL STABILITY
OF GASEOUS SPHERES

In this appendix, we assumeD.2. According to Eq.~37!,
the energy of a polytropic star at equilibrium~u50! can be
written

W5
2n

D
K1W, ~F1!

where K is the kinetic energy andW the potential energy.
Now, for a complete polytrope (pb50), the virial theorem
reads

2K1~D22!W50. ~F2!

Combining the foregoing relations, we get

W5S 12
n

n3
DW. ~F3!

According to Poincare´’s theorem, a gaseous star withW
.0 is unstable@18#. For polytropic stars, this condition i
equivalent ton.n3 .

More generally, the internal energy of a massdmof gas at
temperatureT is dU5CvdmT. Its kinetic energy isdK
5(D/2)dmRT5(D/2)(Cp2Cv)dmT where R is the con-
stant of perfect gases andCv , Cp are the specific heats a
constant volume and constant pressure, respectively. T
we get

U5
2

D~g21!
K, ~F4!

where g5Cp /Cv . For a monoatomic gas,g5(D12)/D
andU5K. Using the virial theorem~F2!, the total energy of
the starW5U1W can be written

W5
Dg22~D21!

D~g21!
W. ~F5!

The star is unstable forg,gcrit52(D21)/D. For D53,
we recover the well-known resultgcrit54/3. For a polytropic
gas, we recover the resultgcrit5111/n3 .
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